
FEBRUARY 2005 34 www.LinuxWorld.com

U
sing the latest hardware and
software technologies, Blue
Gene designers have set the
grounds for a system that
should smoothly scale to several
petafl ops. However, BG/L brings

forth new challenges such as hardware fail-
ure management, effi cient programming,
and scalability of code.

From Quantum Chromodynamics
to Protein Folding
 The world of physics is a driving force
in high performance computing. Applied
physicists rely on supercomputers to
simulate the evolution of dynamic systems
that make up our universe. BG/L’s story
starts with a specifi c branch of physics
called quantum chromodynamics (QCD),
which deals with modeling the behavior of
particles on subnuclear scales.
 In 1998, a group of physicists working
on QCD problems at the University of
Columbia realized that clusters such as ge-
neric high-end servers interconnected by
a fast switch were not effi cient for QCD. So

they designed and built a machine called
QCDSP, which won them the Gordon Bell
prize for the most effective supercomputer.
QCDSP reached 600 GFlop/s (fl oating
point operations per second) using 12,000
processors based on the Texas Instrument
DSP C31 chip, with 2MB DRAM.
 Their achievement led to the creation
of a newer system named QCDOC (QCD
On-a-Chip) in collaboration with IBM
research in 2002. QCDOC is a 20 TFlop/s
system based on 20,000 IBM processors,
with 4MB EDRAM and external DDR/SDR
SDRAM.
 These massively parallel QCD machines
consisted of thousands of low-end proces-
sors interconnected to form a multidi-
mensional torus with nearest neighbor
connections and global functions.
 The successful work IBM research did
with the University of Columbia on the
QCD supercomputers infl uenced the de-
sign philosophy of the Blue Gene project,
which IBM announced in 1999 as a multi-
year plan to build a petafl op machine for
calculations in the area of life sciences.

FEATURE

Open technologies in a petafl ops supercomputer

B Y J O Y K H O R I A T Y

 Blue Gene/L (BG/L) is a massively parallel supercomputer with low cost-to-

performance ratios for speed, power, cooling, and fl oor space. It’s designed and built

by IBM in partnership with the Lawrence Livermore National Laboratory (LLNL) for

the U.S. Department of Energy (DOE).

A B O U T T H E A U T H O R

Joy Khoriaty is studying for his MSc in high
performance computing at the Edinburgh
Parallel Computing Centre (EPCC), at the

University of Edinburgh, Scotland.
 joy@elventails.com

FEBRUARY 200535www.LinuxWorld.com

FEATURE

The BG/L Hardware
 BG/L’s hardware consists of 65,536 com-
pute nodes, 1,024 I/O nodes, and five differ-
ent networks. The densely packed system
grows from two nodes per compute card to
16 compute cards per node board to 16 node
boards per 512-node midplane, and to two
midplanes in a 1024 rack (see Figure 1).
 Each node or ASIC (Application-Specific
Integrated Circuit) is based on the system-
on-a-chip (SoC) technology, which integrates
processors, memory, and communications
logic onto the same chip.
 The ASIC includes two 32-bit PowerPC 440
processing cores, each with two 64-bit FPUs
(Floating-Point Units) (see Figure 2). Each
core has a private 32KB instruction and 32KB
data L1 cache, a 2KB L2 cache, and a shared
4MB L3 EDRAM cache.
 The PowerPC 440 embedded microproces-
sor is not L1 cache coherent and therefore
does not offer symmetric multiprocessing
(SMP) support, but the L2 caches are coher-
ent and act as a prefetch buffer for the L3
cache.
 At a target speed of 700MHz, the peak per-
formance of a node is 2.8 GFlop/s using one
processing core, and 5.6 GFlop/s when both
cores and FPUs in a chip are used. This gives
the entire system a target peak performance
of 180/360 TFLOPS.
 The nodes consume low power by using
these simple embedded microprocessors
that have low clock cycles, and also require
less power, cooling, and space.

Compute Nodes
 The 65,536 compute nodes strictly handle
computations: the image of the program to
be run is loaded by a lightweight kernel into
the node’s memory, and full resource use is
allocated to that single computational run.
 In a normal operation, one processing
core per node is used for computation while
the other handles messaging; however, both
cores can be used for computation if there
is no need for a dedicated communication
processor in the application.
 The compute node operating system is a
simple, single-user, and lightweight kernel. It
provides a single, static, virtual address space
to one running process and a user-level
runtime library that provides access to the
networks.
 Because of its single-process nature, the
kernel does not implement context switch-
ing nor demand paging, but it provides large

pages and SMP support. This approach
results in the application process using the
system resources as fully as possible.
 According to Dr. Manish Gupta, senior
manager of Emerging System Software at
IBM Research, “the Compute Node Kernel
provides a subset of Linux services, but pre-
serves the Linux interface for the services that
it does support. By design, the kernel does
not support services (that many HPC appli-
cations can live without) related to dynamic
process creation/management and demand
paging. There are several services, such as file
I/O and sockets, which the Compute Node
Kernel supports by function shipping those
requests to the I/O node running Linux. This
organization helps achieve scalability to
tens of thousands of nodes, while preserving
much of the familiar Linux functionality.”

I/O Nodes
 Each of the 1,024 I/O nodes manages
communications for a group of 64 compute
nodes.
 They provide access to the filesystem for
the application running on the compute
nodes, as well as socket connections to pro-
cesses in other systems.
 When a compute process on a compute
node performs an I/O operation such as
a read/write to a file, that operation is for-
warded over the network to the managing
I/O node. That I/O node issues the opera-
tion on the filesystem and returns the result
to the compute node.
 The I/O node’s hardware is the same
ASIC as for the compute nodes, with added
external memory and a gigabit Ethernet
connection.

 These nodes run an embedded Linux
operating system and support the execution
of multiple processes. They also perform
process authentication and authorization,
job accounting, and debugging.

Link Nodes
 Signals that cross the midplane boundaries
go through the link nodes, which provide two
functions:
• They boost the signal, improving its shape

and amplitude.
• They can also redirect the signal to differ-

ent ports, effectively partitioning the BG/L
system into logically separate systems.
Spare midplanes can then be set up for
backup or to run separate jobs indepen-
dently.

Network
 BG/L has five communication networks
(see Figure 3):
1. A 64x32x32 three-dimensional torus for

nearest-neighbor calculations on grids. This
is where point-to-point message passing
takes place between compute nodes (com-
pute nodes only/serial communication).

2. A global tree network for broadcast and
reduction operations (all nodes/serial
communication).

3. A barrier network for synchronization
(compute nodes only).

4. Gigabit Ethernet to the JTAG (Joint Test Ac-
tion Group) network for machine monitor-
ing and control (all nodes).

5. Gigabit Ethernet for a connection to other
systems such as external front-end nodes
where jobs can be submitted from (I/O
nodes only).

(64 cabinets, 64x32x32)

(Cabinet 32 Node Boards, 8x8x16)

Chip
(2 processors)

Compute Card
(2 chips, 1x2x1)

Node Boards
32 chips, 4x4x2)
16 Compute Cards

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5 GB DDR

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

180/360 TF/s
16 TB DDR

BLUE GENE/L SYSTEM PACKAGINGFIGURE 1

Open technologies in a petaflops supercomputer

FEBRUARY 2005 36 www.LinuxWorld.com

Programming BG/L
 There are several approaches to pro-
gramming BG/L. They include the familiar
parallel programming model of message
passing using the MPI library in C, C++, or
FORTRAN programs, as well as more recent
global address space programming models
such as Co-Array FORTRAN (CAF) and Uni-
fied Parallel C (UPC).
 Also, mathematical libraries are being
updated to take advantage of the BG/L
architecture.

The Message Passing Interface
(MPI)
 The main parallel programming model
for BG/L is message passing using MPI.
The message passing model consists
of compute nodes sharing data by sen-
ding messages to each other over the
network and is widely used in today’s
supercomputers.
 Message passing on BG/L is sup-
ported through an implementation of the
MPICH2 message-passing library that

efficiently maps onto the torus and tree
networks.
 MPI is a familiar programming model
for most researchers who write their
programs in C, C++, or FORTRAN and
provides a straightforward method for
migrating existing application code to
BG/L.

Co-Array FORTRAN (CAF) and
Unified Parallel C (UPC)
 CAF and UPC are explicitly paral-
lel, global address space languages that
incorporate the Single Program Multiple
Data (SPMD) model into Fortran 90 and C,
respectively.
 For example, UPC adds the “forall” con-
struct to the C language for distributing a
for loop computation across nodes. This
is in contrast to message passing where
the programmer must specify what data is
sent to which node.

Mathematical Libraries
 Mathematical libraries are also being
updated to take advantage of the BG/L
architecture, such as exploiting the second
core for compute-intensive kernels. Some
of them include:
• The Engineering Scientific Subroutine

Library (ESSL), an IBM implementation
of the Linear Algebra Package (LAPACK)

• The Mathematical Acceleration Subsys-
tem (MASS), an optimized mathematics
library for reciprocals and square roots,
in single and double precision mode

• Fast Fourier Transforms (FFT) and
3D-FFT libraries, which are also being
optimized for effective use of the BG/L
FPUs

 Higher-level application frameworks are
also being developed, like the Blue Matter
framework for biomolecular simulations
that separates the complexities of para-
llel programming from the underlying
science.

Running the Programs
 BG/L runs one program at a time; the
program image is loaded and run on the
tens of thousands of compute nodes that
are available.
 There are two approaches to running
programs on the compute nodes:
• The coprocessor model: Each compute

node runs an instance of the program

3 Dimensional Torus
• Point-to-Point

Global Tree
• Global Operations

Global Barriers and
Interrupts
• Low Latency Barriers
 and Interrupts

Gbit Ethernet
• File I/O and
 Host Interface

Control Network
• Boot, Monitoring and
 Diagnostics

BLUE GENE/L NETWORKSFIGURE 3

Ethernet
Gbit

JTAG
Access

Link Buffers
and

Routing

DDR Control
with ECC

Gbit
Ethernet

JTAG 6 outgoing and
6 incoming torus links

at 1.4 Gb/s link
+2.8 Gb/s tree

144 bit wide
DDR

256 MB

5.5 GB/s

128

256

256
Includes ECC

4 MB
EDRAM

L3 Cache

Multibank
1024+

144 ECC

22 GB/s

Shared L3
directory for

EDRAM

11 GB/s

256

256 Multiported
SRAM
Buffer

15-way fully-associative
prefetching caches

Prefetch
Buffers

Prefetch
Buffers

128

128
32k/32k L1

440 CPU

“Double FPU”

“Double FPU”

440 CPU
I/O proc

32k/32k L1

PLB (4:1)
2.7 GB/s

5.5 GB/s

BLUE GENE/L NODE DIAGRAMFIGURE 2

FEATURE

(65,536 instances) with two threads
on noncoherent shared memory and
256MB of memory.

• The virtual node model: Both cores of
each compute node separately load
and run single threaded images of the
application program (131,072 instanc-
es) while sharing the node’s memory
(128MB).

What Scientific Applications
Will BG/L Run?
 BG/L is not a general purpose machine.
Its design is optimized to solve grid-based
problems that are challenging in terms of
the number of nearest neighbor commu-
nications that take place, as well as the
amount of computational power required.
 A good number of these interesting and
computationally challenging problems can
be found in high-energy physics, molecu-
lar dynamics, and astrophysics.
 Protein folding is one of these key prob-
lems in the area of life sciences. Work on
BG/L will help us understand and hopeful-
ly cure diseases such as Alzheimer’s, cystic
fibrosis, and Mad Cow by looking at the
functions that folded/misfolded proteins
play in their development.
 Also on top of the list are simulations
of the aging U.S. nuclear stockpile, which
would mainly reduce the impractical
need of testing nuclear weapons and
ensure the safety and reliability of the
nuclear supply.
 Applications that BG/L does not opti-
mally deal with include problems where
little or no communication takes place
between the compute nodes, and where
distributed computing over the grid and
farming can be used instead.

An Open System
 Open technologies play a major role in
the BG/L supercomputer as it relies at the
software level on key open source software.
Also, as the system was being built, BG/L
simulations were being regularly run on
Linux machines.

Linux, GNU, and MPI
 Supercomputers are moving away from
closed source operating systems to Linux
and open source software.
 This is the case with BG/L where the I/O
and external front-end nodes run Linux,
and the compute nodes run a kernel that
is inspired by Linux. The choice to use
Linux comes mainly from the familiarity of
the scientific community with the OS, its
libraries, and its interfaces.
 This eases the task of programmers get-
ting used to a new system, and brings the
rich and widespread open source model
of software development to scientists and
programmers of BG/L.
 As indicated by Dr. Gupta, “We wanted
to provide a familiar development envi-
ronment to the users so that they could
benefit from the enormous computational
power of BG/L without having to learn a
new way of working with supercomputers.
Using an open source environment also
makes it easier to reach out to the commu-
nity and foster collaborations.”
 Other fundamental open source software
components include the BSD-licensed
implementation of MPI, MPICH2, which is
the main model of programming BG/L.

Open Hardware
 IBM has made the PowerPC architec-ture
an open standard. It has allowed third-party
manufacturers to build the chips and has
made the design tools available.
 According to Dr. Alan Gara, chief archi-
tect of Blue Gene, IBM Research, “The Blue
Gene/L machine was built on the premise
that the key to reaching the highest levels
of performance is to use ‘open’ hardware
technologies along with commodities in a
highly integrated, low-power system.”
 Open hardware is proving beneficial in
many ways, where it “allows customers
to customize their hardware in a man-
ner best suited to their needs such as was
done for the Blue Gene/L supercomputer.”

–continued on page 46

37www.LinuxWorld.com

“Supercomputers are moving away from
closed source operating systems to Linux and

open source software”

FEATURE

FEBRUARY 2005 46 www.LinuxWorld.com

–continued from page 37

 Customers can “achieve custom solu-
tions for complex problems at a fraction
of the investment and cost.”
 Also, “By using the ‘Open’ Power proces-
sor cores, the design team is able to focus
on other aspects of the design, which can
deliver performance. For Blue Gene/L this
focus was put on the network support,
which is important for a supercomputer.”

Simulating BG/L on Linux Clusters
 BGLsim is a parallel application that
runs on Linux clusters to simulate the BG/L
system.
 It executes the full BG/L hardware instruc-
tion set and accurately models all the system
memory and communication devices.
 The simulator was used to develop and
test the system software, including the
compute and I/O node kernels, device
drivers, MPI, compilers, Math libraries,
and benchmarking suites.

 This allowed for the rapid development
and testing of the BG/L software even
before the hardware arrived, which greatly
contributed to accelerating the BG/L de-
velopment process.

Challenges Ahead
 The BG/L project presents challenges
to the designers and programmers of the
system at several levels.
 One of them is handling the failure
rate of the hardware components: having
tens of thousands of processors dictates
that the mean time between failures
(MTBF) is relatively high. Checkpointing
is being used as a solution at the soft-
ware level. It consists of saving the state
of the system at different times during
a program run, so that only part of the
computation can be restarted in case of
failure.
 Writing parallel code is still not simple
and straightforward enough for most
scientists and programmers, but global

address space languages might make that
job easier.
 Getting the code to easily map well
onto the hardware and scale up efficiently
to such a large number of processors may
also present several difficulties.

Onwards to Petaflops Computing
 So far the BG/L system has been suc-
cessful in achieving its design goals in
terms of low-power processors, high-den-
sity packaging, high scalability in archi-
tecture, and encouraging performance
results. The complete system should be
ready in early 2005.
 Crucial challenges in performance,
scalability, and reliability need to be met
so that Blue Gene/P, the petaflops genera-
tion machine that scales on the BG/L
architecture with newer processors and
more memory, becomes a reality toward
the end of 2006.
 Meanwhile, open source technologies,
with Linux at their forefront, have proved
themselves vital in the step toward build-
ing petaflops supercomputers.

References
• QCDSP/QCDOC: http://phys.columbia.

edu/~cqft/
• IBM Blue Gene: www.research.ibm.com/

bluegene/
• The MPICH and MPICH2: www-unix.

mcs.anl.gov/mpi/mpich
• CO-Array FORTRAN: www.co-array.org
• UPC Community: http://upc.gwu.edu/
• Open Power Architecture: www.power.

org

 Thanks to Adam Emery, Manish Gupta,
and Alan Gara from IBM Research for
their feedback and support.
LINUXWORLD MAGAZINE WWW.LINUXWORLD.COM

RANK SYSTEM NAME MANUFACTURER/MODEL/PROCESSOR/INTERCONNECT NUMBER OF PROCESSORS PERFORMANCE (TFLOP/s)

1 BlueGene/L beta-system IBM, BlueGene/L DD2 beta-system, PowerPC440, 0.7 GHz 32768 70.72

2 Columbia SGI Altix, Intel Itanium 2, 1.5 GHz, Infiniband 10160 51.87

3 Earth-Simulator NEC, SX6, Vector Processor, 1.0 GHz, Non-blocking 5120 35.86
 Crossbar Switch
4 MareNostrum IBM, eServer BladeCenter JS20, PowerPC970, 3564 20.53
 2.2 GHz, Myrinet

5 Thunder California Digital Corporation, Intel Itanium 2 Tiger4, 4096 19.94
 1.4 GHz, Quadrics

Leading Systems in the Top 500 Supercomputers List
November 2004 (http://www.top500.org)

Peak Computational Rate 360 TFLOPS (in symmetric mode)
 180 TFLOPS (in communications co-processor mode)

Aggregate Memory 16 TB

Aggregate Global Disk 400 TB

Delivered I/O Bandwidth to Applications 40 GB/s

External Networking 1,024 x 1 Gb/s Ethernet

Number of Nodes(processors) 65,536 (131,072)

Memory per Node 256 MB / 512 MB

Microprocessor Technology Dual PowerPC 440 (700MHz)

Power Required for Computer and Cooling 2 MW

Heat Generated 4,500,000 BTU/hour

Cables in the Machine 5,000

Aggregate Cable Length 12 miles (19.3 km)

Blue Gene/L Specifications

FEATURE

