

Kernel Performance on QCDOC

Joy Khoriaty

MSc in High Performance Computing

The University of Edinburgh

Year of Presentation: 2005

 i

Authorship declaration

I, Joy Khoriaty, confirm that this dissertation and the work presented in it are my own
achievement.

 1. Where I have consulted the published work of others this is always clearly
 attributed;

 2. Where I have quoted from the work of others the source is always given. With
 the exception of such quotations this dissertation is entirely my own work;

 3. I have acknowledged all main sources of help;

 4. If my research follows on from previous work or is part of a larger collaborative
 research project I have made clear exactly what was done by others and what I
 have contributed myself;

 5. I have read and understand the penalties associated with plagiarism.

Signed:

Date:

Matriculation no:

Abstract

he QCDOC system is a high end resource for computational Quantum

s. It is interesting to examine whether one could take advantage of such
 system for other types of scientific codes.

sent results from our investigation on porting computational

ommunications network and the memory subsystems.

ap e Fast Fourier Transform kernel shows
ood scalability of the serial part of the code, but our conveniently written collective

his work presents a first step in understanding both the QCDOC system as well as
e porting issues related to it. Future work can take advantage of our results to

 exploiting this powerful QCD resource.

T
Chromodynamics available today. This powerful system is purpose built for solving
QCD problem
a

n this thesis we preI

kernels onto the QCDOC system, highlighting the issues involved in the porting
process which include understanding the specifics of the system such as the
c

Both computational kernels considered mimic the behavior of scientific applications.
We achieve good results for our Jacobi kernel with nearest neighbor interaction which
m s directly onto the system network. Th
g
communications need improvement.

T
th
accelerate

 ii

Acknowledgements

hat ideally

is patience, guidance and support
roughout this project.

utz

dditional thanks goes to Sean Murphy for useful suggestions and enjoyable

r.

d Jad for making it all possible.

It seems that it is only when we reach the end of the work that we learn w
we should have started with.

I would like to thank Dr. Joachim Hein for h
th

Acknowledgments also go to Dr. Peter Boyle, Dr. Balint Joó and Dr. Michael Cre
for sharing their insight into the QCDOC system and parallel architectures.

A
discussions.

Thanks goes to Laure Sayyed Kassem for her firm support throughout my MSc yea

Thanks to my family, Noha, Joseph an

 iii

Contents

1. INTRODUCTION..8

. BACKGROUND ..10
NAMICS ..10

10
2.2.1. Hardware Architecture ... 11

.............14

...........14

...........17
UBSYSTEMS...19

3.4. MESSAGE PASSING ...20

3.4.3. QMP and MPI ..22
........................24

3.1. STREAM BENCHMARK ...24
3.2. COLLECTIVE COMMUNICATION ROUTINES ...25

3.2.1. Description...25
3.2.2. Implementation...26

3.3. AN IMAGE PROCESSING KERNEL ..28
3.3.1. Description...29
3.3.2. Implementation...30

3.4. A FAST FOURIER KERNEL ...34
3.4.1. Description...34
3.4.2. Implementation...35

3.5. PORTING ISSUES ...38
4. PERFORMANCE RESULTS AND ANALYSIS..39

4.1. MEMORY BANDWIDTH ...39
4.2. IMAGE PROCESSING KERNEL..40
4.4. FFT KERNEL ..43

5. CONCLUSIONS ..45
5.1. SUMMARY OF OUR CONTRIBUTIONS ...45
5.2. LIMITATIONS AND FUTURE DIRECTIONS ...45

6. APPENDIX ...46
6.1. CODE FRAGMENTS ...46

6.1.1 Timing Routine ..46
6.1.2 Basic SCU Communication Example ..46
6.1.3 Jacobi Update ...46
6.1.4 Parallel Read Routine ...47
6.1.5 Random Number Generator Routine...48

6.2. TIMETABLE...49
6.3. RISK ANALYSIS...49
6.4. LIST OF ACRONYMS..50

7. BIBLIOGRAPHY ..51

2

2.1. QUANTUM CHROMODY
2.2. THE QCDOC SYSTEM..

2.2.2. Software Architecture ...13

. WORKING ON QCDOC ...3

3.1. SUBMITTING JOBS ...
3.2. MACHINE TOPOLOGIES..
3.3. MEMORY S

3.4.1. QMP...20

3. PORTING COMPUTATIONAL KERNELS...

 iv

List of Tables

able 1UK-QCDOC Partition Types and Limits ...14

Ta
Ta

T
Table 2 Commonly Used Machine Configuration Commands....................................16
Table 3 MPI Functions Offered by Creutz MPI library ...23

ble 4 Collective Communications Added...23
ble 5 STREAM kernels details...24

 v

List of Figures

igure 5 Web allocation interface ..15
igure 6 Output of qdiscover on an 8 processor partition ...17
igure 7 Mapping between machine and application dimensions17
igure 8 Mapping an 8 processor six dimensional partition to a 4x2 logical partition18
igure 9 Folding from 2D to 1D [1] ..18
igure 10 Folding from 3D to 1D [1] ..19
igure 11 The three memory sections qalloc can reference...20
igure 12 QMP Capabilities on QCDOC ..21
gure 13 Scatter operation..25
gure 14 Gather operation ..26
gure 15 All gather operation ...26
gure 16 AlltoAll operation..26
gure 17 Scatter Routine implemented with qmemcpy..27

Figure 18 Gather routine implemented with qmemcpy ...27
Figure 19 Allgather routine implemented with qmemcpy ...28
Figure 20 AlltoAll routine implemented with qmemcpy...28
Figure 21 Schematic kernel design of the Jacobi Code ...29
Figure 22 Vertical halo swaps in two-dimensional domain decomposition.................30
Figure 23 Dynamically allocating a MxN buffer...31
Figure 24 Communication Pattern of Original Code...31
Figure 25 Parallel read of image data snippet..32
Figure 26 Communication pattern of QCDOC computational loop............................33
Figure 27 Halo swapping with QMP ...33
Figure 28 Strided halo swap with QMP...34
Figure 29 Allocating the a, b two-dimensional buffers onto the heap36
Figure 30 Scattering to available processors of image data by rows...........................36
Figure 31 Gathering of output matrix by rows to master processor37
Figure 32 STREAM on Bluegene and QCDOC ..39
Figure 33 Parallel speed-up of image processing kernel ...41
Figure 34 Parallel efficiency of image processing kernel..42
Figure 35 Computational speed-up of image processing kernel..................................42
Figure 36 Time * Processors logarithmic plot for image processing kernel................43
Figure 37 FFT on QCDOC using qmemcpy based routines..43
Figure 38 FFT on BlueGene ..44

Figure 1 QCDOC ASIC – a System on a Chip [1] .. 11
Figure 2 A QCDOC daughterboard with two ASICs and DDR DIMMs [1]12
Figure 3 A QCDOC motherboard mounted with 32 daughterboards [1].....................12
Figure 4 QCDOC Frontend and Backend Interaction..13
F
F
F
F
F
F
F
F
Fi
Fi
Fi
Fi
Fi

 vi

 vii

1. Introduction

he QCDOC (Quantum Chromodynamics on a Chip) architecture is a special purpose
upercomputer with more than 12000 processors and providing a peak performance of
ver 10 TFlop/s. At the time of writing it is the largest special purpose built system in
e UK. [1]

CDOC is optimized for the needs of lattice QCD. The memory subsystem,
ommunication interconnects, system software, and programming libraries are all
esigned to strictly satisfy that goal. Any additional feature not needed for lattice
CD that would make the machine more general purpose has been left out to keep the

project costs to a minimum.

We investigate the issues encountered when porting computational kernels that mimic
the behavior of a wide class of scientific applications onto QCDOC. Now that the
system is available, this allows us to see whether applications QCDOC was not
initially designed for can use the system. The process of porting involves
understanding and dealing with any software and hardware issues encountered along
the way.

Another aspect of this work involves benchmarking the ported kernels against other
High Performance Computing (HPC) systems available at the Edinburgh Parallel
Computing Centre (EPCC); they include a p690 cluster (HPCx) [3] and a BlueGene/L
system (Bluesky) [4].

Our work is related to the work of Michael Creutz at the Particle Theory Group at
Brookhaven National Laboratory (BNL) who wrote a minimal port of MPI to
QCDOC using his own memory copy routine [2]. His works initially began on
QCDSP (QCD on a Digital Signal Processor), a predecessor of QCDOC.

The reader is expected to be familiar with the Message Passing Interface (MPI) [5].
All supplied source code and programs are written in C/C++. Courier New font is
used to indicate source code snippets and the names of subroutines.

In section 2 we introduce some background information on QCD. This should give
the reader an idea of the type of problems QCDOC was designed to solve. We then
present the QCDOC hardware architecture, the software architecture, the approaches
to programming the system, and its message passing libraries.

Section 3 presents the different computational kernels that will be examined. The first
kernel is a Jacobi iteration type code. The second kernel is a two-dimensional fast
Fourier transform (FFT). Section 3 also presents our work with collective data
movement routines. Lastly we present the issues that we faced in the porting process.

Section 4 presents our results and analysis. A performance comparison is done against
ports onto the different HPC platforms available at EPCC for the image analysis and
the FFT kernels. Different collective communication routines based on varying

T
s
o
th

Q
c
d
Q

message passing libraries are also benchmarked.

n itations, and suggests future directions of
search.

Sectio 5 summarizes our work, its lim
re

 9

2. Background

2.1. Quantum Chromodynamics

CD is a theory which describes one of the fundamental forces of nature called the
trong interaction. It was proposed in the early 1980s by David Politzer, Frank

ilczek and David Gross as a theory to understand the structure of protons, neutrons
nd other particles. It uses Quantum Field Theory (QFT) to describe the interactions
f quarks and gluons which are considered today as elementary particles. QCD is an

portant contribution to the Standard Model of elementary particle Physics.

vestigating QCD for low momenta as typical for Hadrons such as Protons and
eutrons using analytic techniques in continuous space-time proves difficult. This is
hy Lattice QCD as a discretisation of QCD onto a lattice mesh is used instead [6].
y formulating QCD on a space time lattice this opens the problem to be tackled
rough simulations using modern computers.

 numerical method primarily used in lattice QCD is the Hybrid Monte Carlo
lgorithm to perform the Feynman path integral in a space-time discretised within a
ur-dimensional Cartesian lattice or Cartesian grid. The input parameters consist of

uark masses and the strength of the coupling constant [7].

he nature of the problem involved in lattice QCD suggests that a minimal set of
atures are required for a special purpose QCD machine. These include efficient

earest-neighbor communications, a minimal set of collective communications,
odest input/output (I/O) requirements, and as much computational throughput as

ossible.

.2. The QCDOC System
he QCDOC system was developed by a collaboration of Columbia University,
KQCD, the RIKEN-BNL Research Centre and IBM. It builds on the work of the

QCDSP supercomputer [8], a four-dimensional mesh machine built in 1998 which
won the Gordon Bell Prize award that year for best price/performance machine.
QCDSP proved that a massively parallel processor could be built to provide low
latency, high performance, low power consumption, and high integration.

The design goals of QCDOC are the same as its predecessor, the main difference
being greater transistor density and clock speeds, as well as a higher bandwidth, lower
latency, and a more flexible communications network. QCDOC achieves an equally
important price/performance ratio as part of its design goal by having 1$ per sustained
Mflops. This is done by having processors clocked at around 450MHz with 2flops per
cycle at half of their efficiency costing around $400 each [X] (1).

Q
s
W
a
o
im

In
N
w
B
th

A
a
fo
q

T
fe
n
m
p

2
T
U

Mflops
effMHzcycleflops

/89.0$
50.0450/2

400$
=

⋅⋅
 (1)

 10

e/price ratio of a single processor coupled with a

rk hat the QCDOC supercomputer was designed.

2.2.1. Hardware Architecture
is based on an Application Specific

ng point
perations, crucial for scientific number crunching. To achieve that, a 64-bit IEEE

C system.

It is in this spirit of high performanc
netwo that allows high scalability t

The QCDOC massively parallel computer
Integrated Circuit (ASIC) which uses IBM System-on-a-Chip (SoC) technology. The
ASIC allows a complete system with processor, memory, and network controllers to
be integrated into a single chip.

The main component of the QCDOC ASIC (figure 1) is an embedded IBM PowerPC
440 CPU core. This is a 32-bit processing core that does not handle floati
o
floating point unit (FPU) is added which can supply 0.8 GFlops.

An embedded DRAM chip (EDRAM) of 4 MB is connected to the cores through a
high speed bus of 8GB/s bandwidth, in addition to a 2.6 GB/s interface to the external
memory which is of 128MB on the UK QCDO

Figure 1 QCDOC ASIC – a System on a Chip [1]

system a very small
electrical and floor footprint.
The system packaging allows for high density and integration. Two Cs r
are packaged into a daughterboard (figure 2) with an associated dua e

Inter-node communications on QCDOC are handled through high-speed serial links at
12 Gb/s of bandwidth. Additionally an Ethernet interface allows booting the nodes as
well as diagnostics and I/O.

The ASIC is power efficient and has a small footprint. It consumes 1-2 Watts of power
and the size of a processor die is at 1 cm per side. This gives the

 ASI o nodes
l inline m mory

 11

module (DIMM) socket for each node. 32 daughterboards (figure 3) make up a

te
ystem (figure 5).

motherboard, 4 motherboards are inserted in a backplane (figure 4), and two
backplanes make up a crate, and two crates make up a rack to make up a comple
s

Figure 2 A QCDOC daughterboard with two ASICs and DDR DIMMs [1]

Figure 3 A QCDOC motherboard mounted with 32 daughterboards [1]

The system consists of three networks. The physics network consists of a
six-dimensional bit-serial nearest-neighbor mesh. This is the high performance
network onto which QCD problems map well. It is a very low latency network of the
order of a fraction of a microsecond, and offers high bandwidth connections to the
neighboring nodes. The two dimensions above the fourth dimensions offer flexibility
in repartitioning the machine using space filling curves to reduce dimensionality (ref
topology). This is an improvement on the QCDSP system where for each varying
partition configuration the system had to be re-wired by hand.

The control network is a 100 MB/s Ethernet tree used to boot the compute node

he machine is accessed via a front end machine on which jobs are compiled and

kernels, load programs and perform I/O. The global interrupt network is used for
initial synchronisation of the system.

T
submitted to QCDOC. I/O on QCDOC is also handled by an external dedicated file
server.

 12

2.2.2. Software Architecture
Three main layers make up the QCDOC software architecture [1]. Essentially these
layers allow for writing and building programs for the compute nodes on the front end,
he interaction betwt een the front-end with the backend nodes and the execution of the
ompiled programs on the backend nodes with the results outputs redirected
ccordingly.

The first layer runs on the front end machine and allows interaction with the compute
nodes. This involves booting the backend nodes via the JTAG Ethernet interface and
loading a run time kernel onto the systems. Managing and controlling the backend
nodes is then done via a multithreaded program called the qdaemon and an adapted
shell called the qcsh.

c
a

Figure 4 QCDOC Frontend and Backend Inter on

he second component is the computational node run kernel. This is a lightweight

r codes to the backend.
he GNU C++ and IBM xlC are offered as cross-compilers to the QCDOC compute

P). SCU provides Direct Memory Access (DMA)
ommands to send and receive data from a compute node to the other, while QMP

acti

T
operating system which offers basic services such as loading programs into memory,
accessing the on-chip network devices and servicing system calls and I/O. The
lightweight kernel runs two threads only, one for the kernel itself, and the other for the
running application. It does no job scheduling or swapping so that the compute node
resources are entirely dedicated to the executing program.

The third software layer is the user environment. It offers a familiar and standard
environment for users to edit, compile, debug, and submit thei
T
nodes. Two message passing libraries allow the user to describe the exchange of
messages between the compute nodes: the serial Communications Unit (SCU) and the
QCD Message Passing Interface (QM
c
offers a higher level and more general interface to messaging passing which includes
collective communications regularly used in QCD applications.

 13

3. Working on QCDOC

3.1. Submitting Jobs

 in no way all-inclusive, but rath ause of main
onceptual sim s between QCDSP and QCDOC, an authoritative guide on

QCDSP [11] offers a lot of additional insight. In this section we try to briefly
round-up and complement the information representative of working with the
machine from both what is available online an our own experience with the system.

We look at the steps involved in a typical job submission and then explain the
fundamental concept of mapping the physically allocated partition to the desired
logical partition.

Running a job on QCDOC is a straightforward procedure. The first step consists of
reserving a partition on the system, where a partition is a six-dimensional subset of the
available compute nodes on the system. Partitioning allows more than one job to run
at a time. Typically small development partitions of up to 256 nodes are available for
code development, whereas bigger partitions of 1024, 2048 and 4096 partitions are
reserved for production QCD runs.

The process of submitting jobs to QCDOC is directly linked to understanding the
machine hardware configuration required for the application to be run.
Documentation for using the system is available through various online short manuals
[12] [13] [14] which are er scarce. Bec

ilaritiec

Number of Nodes Allocation Limits Typical Naming

8/64/256 node machines Time limited dev/slot0-3
rack32/crate0/slot0

64 node machines Time unlimited acc3/slot0 status
1024/2048/4096

“monsters”
Time unlimited rack33

Table 1UK-QCDOC Partition Types and Limits

No batch or queuing system is available on QCDOC. Currently a web-based partition
reservation system (figure 5) is used where a user flags a partition as reserved for a
certain amount of time to run jobs. The allocated partition should be released when
done so that it can be allocated by another user. This process works well because of
the relatively small and tightly integrated QCD community but it would face problems
with a larger number of users. The allocations are sometimes reinforced with a time
limit after which the partition is released and marked available automatically; this
concerns smaller partitions as detailed in (table 1).

 14

Figure 5 Web allocation interface

QCDOC is accessible through its front end machine system, via secure shell
connections (SSH). The front end is typically a symmetric multiprocessing (SMP)
erver which can handle high loads of users in a reliable way. The user connects to the
ont end system to edit, compile, debug, and submit their codes to the backend nodes.

Once lo d use th ate QCDO g System
(QOS), by sourcing the appropriate directory

source /qcdoc/sfw/qos/v2.6.0/aix5.2g/scripts/setup.sh

This sets up various e g. The user now has
access to variety of commands (table 2) to that are used to configure and control the

s
fr

gged in, the user shoul e most up-to-d C Operatin

nvironment variables and paths for compilin

machine.

We will explain these commands in the remainder of this section by going through a
typical job submission run that consists of connecting to the machine, setting up the
partitions, compiling a program, submitting it to the backend, and finally detaching
for the partition.

qsession $QMACHINE Script to start qdaemon and qcsh
qinit $QMACHINE Connect a qcsh session to a qdaemon
qpartition_connect Connect to a partition
qreset_boot Resets and boots a partition
qdiscover Find the topology of a partition
qpartition_remap Map a machine topology

 15

qrun Run a program
qnodes_print Print nodes information
qdetach Disconnect from a partition
qkill Kill a running user program
qhelp Displays help information

Table 2 Commonly Used Machine Configuration Commands
The user can now bring up a partition reserved online by connecting to it using its
unique name. The name is of the type /dev/slot0-3 or /rack32/crate0/slot0. For our
explanation we use the environment variable name $QMACHINE to represent the
machine’s unique name. The user then loads the desired run time kernel onto the
compute nodes and initializes them by running

Where the qsession script starts qdaemon and qcsh and sets the $QMACHINE
variable to the qsession argument. qinit starts up communications with the
qdaemon for on the allocated partition. qpartition_connect establishes a
connection with the machine. This typical sequence of commands can be place into
a .qcshoc file so that they get executed automatically once a qsession
$QMACHINE command is called.

The user is now connected to his partition and should define the mapping between the

hysical machine and the desired logical machine

here qdiscover discovers the physical machine topology by counting how many

apping between the machine and
pplication directions. We present the concept of mapping between the physical

machine a is now
omplete with the network communications up, the application axes mapped to the

p involves loading the appropriately cross compiled program onto the
rocessing nodes.

owerpc-gnu-elf-g++ is the cross compiler which takes the myprogram.C

C++ program s e mpiled
executable call

$ qsession $QMACHINE
$ qinit $QMACHINE
$ qpartition_connect –p 0

p

 $qdiscover
 $qpartition_remap –X45 –Y0123

W
nodes exist in each of the six physical machine dimensions. And
qpartition_remap allows changing the m
a

nd the application in further detail in section 3.2. The machine setup
c
physical axes, and all the nodes run kernels ready.

The final ste
p

 $powerpc-gnu-elf-g++ myprogram.C –o myprogram
 $qrun myprogram

p
ource code as an argum nt and returns a PowerPC co
ed myprogram.

 myprogram$ qrun

 16

qrun then loads the program into each and runs it. The output from
node 0 or the root processor will be ech l or qcsh session only.
The outputs fro r nodes can b e_print command.

Running or han s can be signale L-C from the shell.
The qkill pro processes are

rve it.

3.2. Machine Top

s
gy.M> Dimension 2 has length 1 nodes

D:Partition::DiscoverTopology.M> Dimension 3 has length 2 nodes

Figure 6 Output of qdiscove on an 8 processor partition

Consider the six physic through 5 and the six
logical or application dimensions referred to as T, X, Y, Z, S and W respectively. Each

 application code can
es as
ingle

 compute node
oed to the users’ shel

m the othe e read by using the qnod

ging job d to stop by hitting CTR
gram can then be called to make sure that no run-away

still running.

Once a job is completed one can detach from the machine partition using qdetach
or simply by exiting qcsh. Lastly the user should release a time unlimited partition if
it is no longer in use so that other users can rese

ologies

Once a partition is allocated as described above, its topological configuration can be
discovered with the qdiscover command (figure 6). This shows how many nodes
are present in each of the six physical dimensions available.

QD:Partition::DiscoverTopology.M> Dimension 0 has length 1 nodes
QD:Partition::DiscoverTopology.M> Dimension 1 has length 1 node
QD:Partition::DiscoverTopolo
Q
QD:Partition::DiscoverTopology.M> Dimension 4 has length 2 nodes
QD:Partition::DiscoverTopology.M> Dimension 5 has length 2 nodes

r

al dimensions avai able as numbered 0l

node has a mapping between the application dimensions and the machine dimensions
(figure 7). This way, the topology and dimensionality seen by the
be changed by remapping the machine and application directions as many tim
needed. This is done by consecutively folding the machines axes together into a s
application axis until the desired topology is reached.

Figure 7 Mapping between machine and application dimensions

For example (figure 8), we have the configuration for 2 processors in the Z dimension,
2 processors in the S dimensio in the W dimension. Given the
available machine space, one can setup the required application space or logical

achine by using the qpartition_remap command to map the allocated machine

n and 2 processors

m

 17

to the logical one.

Figure 8 Mapping an 8 processor six dimensional partition to a 4x2 logical partition

$ qpartition_remap –X45 –Y0123

ing
al

In the arguments o esents a logical
achine dimension is followed by one or more numbers that represent the physical

In order to have a 4x2 two-dimensional logical machine, we would use the command

This would map the physical dimensions 4, and 5 to the X logical dimension mak
it of size 4 (2x2) processor dimension, and this would map the 0, 1, 2 and 3 physic
dimensions to the Y logical dimension making it of size 2 (1x1x1x2).

f qpartition_remap, each letter which repr
m
dimensions. As you see, more than one physical dimension can be mapped or folded
against the same logical dimension. This mapping of several hardware dimensions
into a single logical dimension is done by using space filling curves. We can see in
(figure 8), how a two-dimensional topology is folded into a one-dimensional one.

Figure 9 Folding from 2D to 1D [1]

his folding of machine dimensions into logical dimensions which is done by T

mapping more than one physical axis to the same logical axis is a great improvement
in flexibility over the previous QCDSP system where a time consuming rewiring
process was required for each configuration.

 18

If we consider another example, running

qpartition_remap -T345 -X1 -Y2 -Z0

This will give a configuration for an 8x1x1x1x1x1 machine logical machine.

With the six-dimensional physical machine, we can therefore map the physical axes
into dimensionalities ranging from one dimension to 6 dimensions, such as for
example (figure 10) mapping folding a three dimensional machine into a one
dimension. If any mappings are incorrect, qpartition_remap will notify the user
that the mapping cannot be made.

Figure 10 Folding from 3D to 1D [1]

low
memory. The fast memory uses the 4MB o emory consists
of the 128MB DDR-SDRAM. 96MB of which are reserved for dynamic allocation
and around 16 MB for static allocation as of QOS 2.6.0. The system L1 cache is
partitioned into 31KB of normal data + 1 KB of streaming data. As noted earlier, the
bandwidth of the EDRAM is around 3 times that of the DDR-SDRAM.

In order to place data on the fast memory, we use the qalloc() routine by linking
against the qalloc.h header file. It allows for the allocation of data on the fast and
slow memories. The memory can in turn be freed by using the qfree()routine.

qalloc() allows the programmer to choose between the memory to be used by
passing one of three flags (f and QNONCACHE which

spectively represent the slow or DDR-SDRAM memory, the EDRAM and no

3.3. Memory Subsystems
There are two accessible memory subsystems on QCDOC: a fast memory, and a s

f EDRAM and the slower m

igure 11), QCOMMS, QFAST,
re
caching.

 19

aking advantage of the fast memory is crucial to obtaining better performance from
e system, and we will be investigating th r analysis and benchmarks. We will

investigate the effects of using the diff inds of memory available in the
benchmarks.

3.4. Message Passing

Two message passing libraries are available on QCDOC. The first one is know as the
SCU, and the second one QMP. At the lower layer, calls to the SCU give access to
send and receive functionality. These are asynchronous, allowing the overlapping of
communication and computation. On top of the SCU layer is the QMP interface, a
standard developed by unity to provide fast
nearest-neighbor messaging and some general communications routines. We focus on

MP for our work.

.4.1. QMP
ovide portable, low-latency, high-bandwidth

 SCU and is

e basic capability requirements (figure 12) of QMP include the availability of a

MP also offers a few collective communication routines such as broadcast, global
summation, global max, global reductions. Additionally QMP offers allocated
partition configuration functions.

void * qalloc (int flags, size_t bytes)
enum {

 QOMMS = 0x02,

};

QNONCACHE = 0x01,

 QFAST = 0x04,

Figure 11 The three memory sections qalloc can reference

The standard malloc routine can also be used and the memory allocated will be
placed on the DDR-SDRAM.

T
th is in ou

erent k

the LQCD research comm

Q

3
“The goal of QMP is to pr
communication routines suitable for Lattice QCD” [9] QMP is an application
programming interface (API) optimized for the style of communication used in
LQCD which consists of regular, repetitive communications between nearest
neighbor nodes in an n-dimensional torus with periodic boundary conditions.

This application domain specific interface is implemented in three flavors. QMP-MPI
mplemented on top of MPI is used clusters; QMP-QCDOC uses thei

designed for QCDOC and QMP-MVIA implemented is used on gigabit Ethernet or
VIA (Virtual Interface Architecture) clusters. For our work, we only consider
QMP-QCDOC and refer to it as QMP.

Th
barrier call to synchronize all the partition nodes, sending contiguous messages to
neighboring nodes along a specified axis and direction, and sending non-contiguous
messages to a neighboring node where the message consists of a set of strided blocks.

Q

 20

head. Global operations are implemented using the store-and-forward
apability of QCDOC. The implementation of QMP on QCDOC is complete but does
ot contain non-nearest neighbor communications.

ve list of the calls we used throughout our work. More
etails are available in the QMP standard [9].

QMP_get_number_of_nodes()
QMP_get_node_number()

ocated
achine.

lem onto the logical machine

erformance

declare_msgmem()
QMP_free_msgmem()

 Point-

 Simult

 Separa sfers, so that

 overheads for repeated
transfers

 Global operations: global sum, maximum, minimum operations for

to
Non-blocking (computation and communication can be overlapped)

an u sfers
Chained block/strided transfers

te ion and commencement of tran
opened channels can be reused to minimize

-point communication

eo s, multi-directional tran

 routines for initializat

integers, single and double precision numbers, and binary reductions,
broadcast, barriers.
Basic machine topology configuration and control

Figure 12 QMP Capabilities on QCDOC

QMP performance in latency is close to QCDOC native calls. This allows for small
software over
c
n

We present a non-comprehensi
d

A group of QMP calls are dedicated for initializing the message passing environment,
specifying the machine layout, and terminating the work

QMP_init_msg_passing()
QMP_finalize_msg_passing()

These calls allow the discovery of the allocated machine configuration, the node
number of the current node.

Additional calls allow the configuration of the logical layout of the machine (number
of nodes in each direction) based on the constraints of the underlying all
m

QMP_declare_logical_topology()
QMP_get_logical_dimensions()

QMP_get_logical_coordinagtes()

And optimally partition the lattice prob

QMP_layout_grid()

Nearest Neighbor Communications can be declared through the following routines.
These communications are intended to be highly repetitive in order to achieve high
p

QMP_allocate_memory()
QMP_delcare_strided_msgmem()

 QMP_

 21

The b i

ceive_relative()

Where lare_receive_from() and QMP_declare_send_to()
whic r
they are

The performance in initiating

as c send/receive operations are done using the following calls

QMP_declare_re
QMP_declare_send_relative()

QMP_dec
h a e defined in the QMP standard are not implemented on QCDOC because

non-nearest-neighbor.

QMP_declare_multiple() function improves
multiple sends by collapsing them into a single call.

QMP_wait_all()

ing global operations for
duction of maximum/minimum and collective synchronisation of the processors

QMP_broadcast()

3.4.3. QMP and MP

 is not supported because the generality it offers is not
eeded for QCD specific codes. It is designed to offer a lightweight, efficient message

The main difference and MPI are that
there are no non-near s more general. The
generality of MPI i n run with higher

erformance. There could have been an implementation of MPI on QCDOC but what

Despite that, some work has b DOC by Michael Creutz [2].
is MPI library for QCDOC is not complete, but offers a minimal number of MPI

y

n of betwee a sub-optimal yet simple
approach.

Communications are started with the following calls

QMP_start()
QMP_wait()

Collective communications in QMP also include the follow
re

QMP_sum_int()

QMP_barrier()

I

It is natural to compare QMP with MPI, since MPI is a standard message passing
interface used in HPC. MPI
n
passing system without implementing for example all of the semantics of MPI which
are not needed in the context of LQCD.

s with the QMP for QCDOC implementation
est neighbor communications. Also, MPI i

s not needed for QCD since leaner libraries ca
p
was wanted was an optimized messaging interface for LQCD only.

een done to port MPI to QC
H
calls (table 3). The library is built on top of the SCU, and the memory copqmemcpy
routine. They allow point to point communications to be performed at the price of
synchronizatio n all the nodes, which makes it

 22

MPI_Init MPI_Finalize
MPI_Comm_rank MPI_Send
MPI_Comm_size MPI_Isend
MPI_Get_processor_name MPI_Irecv
MPI_Barrier MPI_Issend
MPI_Abort MPI_Attr_get
MPI_Reduce MPI_Bcast
MPI_Wait MPI_Allreduce
MPI_Recv

Table 3 MPI Functions Offered by Creutz MPI library

 qmemcpy routine are described
 (3.2).

MPI_Gather MPI_Scatter

We have added the following collective communication routines (table 4). Details of
our basic implementation of these functions using the
in

MPI_All toallgather MPI_All

Table 4 C Added ollective Communications

 23

3. Porting Computational Kernels

3.1. STREAM Benchmark
Many scientific app memory str ming applications, as we will see
later on in the ima l known, standard
memory benchmark. It is ideal for studying memory performance in isolation.

e STREAM benchmark to show us what kind of performance gains we can
btain when using the fast ory DR-SDRAM.

The STREAM benchmark program measures the sustainable memory bandwidth (in
MB/s) and the correspo ctor kernels [17]. The

le of thumb is to allocate an amount of memory so that each array is at least 4 times
the size of the sum of all the last-level caches used in the run.

Routine Kernel Bandwidth
(bytes/iteration)

Computational
Intensity

(Flops/iteration)

lications rely on ea
ge processing code we study. STREAM is a wel

We consider the STREAM benchmark in order to highlight the memory bandwidth on
QCDOC and see how it compares with our other benchmark systems. Specifically, we
xpect the

o EDRAM mem instead of the D

nding computation rate for simple ve
ru

COPY a(i) = b(i) 16 0
SCALE a(i) = q*b(i) 16 1
SUM a(i) = b(i) + c(i) 24 1

TRIAD a(i) = b(i) + q*c(i) 24 2
Table 5 STREAM kernels details

This is a serial performance code with no challenges for a parallel system per se, but
the results will reflect the performance of the memory subsystems.

We want to test the different memories so we use the qalloc routine. Some changes
had to be made to the code to take advantage of the dynamic memory. We start by
including the qalloc.h header file which contains all the information required to
use the qalloc memory allocation function

We define QFLAGS so that we can easily switch between testing for fast memory and
for slow memory without having to do many changes to the code

The one-dimensional buffers can then allocated by doing the following

#define QFLAGS (QCOMMS|QFAST)

#include <qalloc.h>

 25

 code involve changing the static allocation of

All to All

nt this functionality.

3.2.1. Description

The collective communications we look at are mainly collective operations that deal
with data movement across the available processors [5]. They are block collective
operation re all t involved. y build on the foundation of
message passing, which is point-to-point com ations to o r simpler
communication primitives th

 a scatter operation, a root processor (P0) sends a message that is split into equal

/* dynamically allocate the arrays onto the fast memory
QCDOC*/
a = (double *) qalloc(QFLAGS, (N+OFFSET)*sizeof(double))

 of

;
b = (double *) qalloc(QFLAGS, (N+OFFSET)*sizeof(double));
c = (double *) qalloc(QFLAGS, (N+OFFSET)*sizeof(double));

The basic changes to the STREAM C
the vectors to dynamic allocation so that we can specify the fast memory using the
QCOMMS|QFAST flag, or the DDR-SDRAM memory using the QCOMMS flag.

3.2. Collective Communication Routines

When considering one porting the two-dimensional fast Fourier transform we noticed
hat collective communications that offer Scatter, Gather, All Gather, and t

operations would be required. Since they are not immediately available through the
QMP library, we implemented them to make the kernel port possible.

For the kernels we study later, we need collective communication routines that are not
eadily available on the system. We therefore have to implemer

ing
s, whe he processors are The

munic ffe
at involve all the processors.

In
segments. The ith segment is sent to the ith processor.

Figure 13 Sca er operation

tion. Here messages
re passed back from all processors to a root processor (P0). In this the individual

segment sent by each pro er on the root processor.

 tt

The gather operation is considered the inverse of the scatter opera
a

cessor is concatenated in rank ord

Figure 14 Gather operation

n an All Gather operation, the messages are passed back to all of the avI
p

ailable
rocessors.

Figure 15 All gather operation

he AlltoAll operation is an extension the All Gather operation, where each processor

T
sends distinct data to each of the receivers. The jth block sent from process I is
received by process j and is placed in the ith block.

Figure 16 AlltoAll operation

3.2.2. Implementation
We therefore wrote the above collective communications (figure 17, 18, 19, 20). The
communication routines were written using the memory copy function written by
Michael Creutz [2].

a
essage to be sent from one node (source) to another node (destination) while

pecifying the specific size of the data to be transferred, that is the number of
elements and their type. The routine then handles routing the message appropriately
across the physical network, using one of the bi-directional links for sending, and the

qmemcpy(int destproc, void * dest, int srcproc, void * src, int size);

t is worth briefly looking at how the qmemcpy routine works [10]. It allows I

m
s

 26

other for listening. A lookup table is generated with the optimal path the message
should follow, if at some point the line is busy then the message enters a FIFO based
queue. The communications are implemented using the SCU library, where the
exchanged messages are written to a send address register, global interrupt on a line
flag store/fetches, and synchronizations.

/*
 * scatter(int numnodes, void * destbuf, int srcnode, void * srcbuf, int sendcount, int datatype_size)
 *
 * [IN numnodes] number of nodes to scatter to in order

ess of source buffer
 * [IN sendcount] number of elements to send to each process
 * [IN datatype_size] size of data type to send/receive
 *
 */
void
gencom::scatter(int numnodes, void * destbuf, int srcnode, void * srcbuf, int sendcount, int datatype_size) {
 printf("");
 int destnode=0;
 for (destnode=0;destnode<numnodes;destnode++) {
 if(processor == srcnode) {
 mycom.qmemcpy((int)destnode, destbuf, (int)srcnode, &(((double *)srcbuf)[sendcount*destnode]),
(int)sendcount*datatype_size);
 }
 mycom.finishcopy();
 mycom.maxqueue=0;
 }

 * [OUT destbuf] address of destination buffer
 * [IN srcnode] rank of sending process
 * [IN srcbuf] addr

}

Figure 17 Scatter Routine implemented with qmemcpy

/ * gather(int numnodes, void * destbuf, int dstnode, void * srcbuf, int sendcount,
int datatype_size)
 *
 * [IN numnodes] number of nodes to scatter to in order
 * [OUT destbuf] address of destination buffer
 * [IN dstnode] rank of receiving process
 * [IN srcbuf] address of source buffer
 * [IN sendcount] number of elements to send to each process
 * [IN datatype_size] size of data type to send/receive
 *
 */
void
gencom::gather(int numnodes, void * destbuf, int dstnode, void * srcbuf, int
sendcount, int datatype_siz

 int srcnode=0;

 for (srcnode=0;srcnode<numnodes;srcnode++) {

) {
ode, &(((double *)destbuf)[srcnode*sendcount]),

 }

e) {

 if(processor == dstnode
 mycom.qmemcpy((int)dstn
(int)srcnode, srcbuf, (int)sendcount*datatype_size);
 }
 mycom.finishcopy();
 mycom.maxqueue=0;
 }

Figure 18 Gather routine implemented with qmemcpy

 27

3.3. An Image Processing Kernel
The first computational kernel we port is a parallel lattice based image analysis
program which rec i iteration over a

o-dimensional domain. We start by describing the work that is done in this type of
rogram and then show the porting implementation onto the QCDOC system.

/* * allgather(int numnodes, void * destbuf, void * srcbuf, int sendcount, int
datatype_size)
 *
 * [IN numnodes] number of nodes to scatter to in order
 * [OUT destbuf] address of destination buffer
 * [IN srcbuf] address of source buffer
 * [IN sendcount] number of elements to send to each process
 * [IN datatype_size] size of data type to send/receive
 *
/

ncom::allgather(int numnodes, void * destbuf, void * srcbuf, int sendcount, int

 mycom.qmemcpy((int)i, &(((double *)destbuf)[j*sendcount]), (int)j, srcbuf,
t)sendcount*datatype_size);
 mycom.finishcopy();

 *
void
ge
datatype_size) {

 int i=0, j=0;

 for (i=0;i<numnodes;i++) {
 for (j=0;j<numnodes;j++) {

(in

 mycom.maxqueue=0;
 }
 }
}

Figure 19 Allgather routine implemented with qmemcpy

/*
 all *

 *
toall(int numnodes, void * destbuf, void * srcbuf, int sendcount, int datatype_size)

 * [IN numnodes]
 * [OUT destbuf]
 * [IN srcbuf] address of source buffer
 * [IN sendcount] number of elements to send to each process
 *
 *
 *
vo
gencom::alltoall(int numnodes, void * destbuf, void * srcbuf, int sendcount, int
da

 ycom.qmemcpy((int)j, &(((double *)destbuf)[sendcount*i]), (int)i, &(((double
*)srcbuf)[sendcount*j]), \

 mycom.maxqueue=0;

}

 number of nodes to scatter to in order
 address of destination buffer

 [IN datatype_size] size of data type to send/receive

/
id

tatype_size) {
int i=0,j=0;

for (i=0;i<numnodes;i++) {
r (j=0;j<numnodes;j++) { fo

 m

 (int)sendcount*datatype_size);
 mycom.finishcopy();

 }
}

Figure 20 AlltoAll routine implemented with qmemcpy

onstructs an image from its edge data by Jacob
tw
p

 28

3.
The program consists of three main parts: startup, main computation loop and cleanup
(fi is initialized, preliminary
ch ailable, reading-in the edge data file, and
se

T ng the Jacobi algorithm to
re imensional edge data set using the 5-point
s

 (2)

W edge input data, old is the image value at the current iteration and
with the new is the final value of the reconstructed image at the iteration.

T
tw sense the code can be distributed
over the available processors to benefit from parallel computing techniques. Each
it putational loop requires nearest neighbor communications
(figure 22) to update the boundary data of the node. Each processor then computes
the value of its local new with the data it has received from its neighbors until the
required number ping criterion or

lerance level is reached. The termination criterion is given by (3)

3.1. Description

gure 17). At startup, the message passing environment
ecks such as the number of processors av
tting up the appropriate data-structures are done.

Distribute Data

Figure 21 Schematic kernel design of the Jacobi Code
he main computational loop of the kernel involves usi
construct an image from its MxN two-d

tencil described in equation (2)

e

Perform Jacobi

Update Delta

Gather Data

)(25.0 ,1,1,,1,1, jijijijijiji edgeoldoldoldoldnew −+++×= +−+−

here edge is th

he streaming code is computationally intensive but it is easily parallelised using the
o-dimensional domain decomposition. In that

eration of the main com

of iterations is reached or when a preset stop

to

2)old− ,
1;1

, ji
ji

jiMN ==
 (3)

This tolerance level indicates that the result obtained is sufficiently accurate and is
obtained by performing a global sum over the available processors.

;
2 (1 NjMi

new=∆ ∑
=

The final part consists of reassembling the processed data into a main buffer which is
used to write the processed image to disk.

=

 29

This application of the Jacobi algorithm makes a good benchmark style code [16],
since the kernel displays a similarity to a variety of scientific codes with nearest
neighbor interactions and global summations. What additionally makes this an
attractive kernel is that the simplicity of the work taking place enables us to identify
auses of poor performance which could be more dc

in
ifficult to understand and interpret

 full applications.

Figure 22 Vertical halo swaps in two-dimensional domain decomposition

Im ar
more performant inverters are available for real performance code from a number of

or our work the efficiency of the algorithm is not our main interest. What we really

3.3.2. Implementation

ications which is
adily available. The global sum operation required for the calculating the residual is

iation and proved versions of the Jacobi algorithm such as the Gauss-Seidel v

high-performance libraries [18].

F
want is a code that runs well and produces correct results that can be used to reflect
the underlying performance characteristics of the system it is running on for our
analysis.

We are interested in the typical features of the code such as the nearest neighbor
communications, the global post processing, and the porting details of this code to
QCDOC which we look at next.

At first impression this kernel should be easily ported onto the QCDOC architecture.
The bulk of the computation involves nearest neighbor commun
re
also a routine available from the QMP library. Let’s go through the steps involved in
porting this code to QCDOC.

 30

The first step in porting the code to QMP on QCDOC involves minor changes to the
original code that are not specifically parallel system specific. The original code was
written in MPI and C using static two-dimensional arrays. Since there is only a C++
compiler on QCDOC, a simple conflict that arose involved the original code using the
variable name new for the new buffer, when new is actually a reserved C++ keyword.
Also The QMP implementation does not offer the equivalent of the MPI timing

utine MPI_Wtime(). A portable timing routine was therefore added using the
standard gettimeofday() call.

Adjustments to the code data-structures then have to be made so that they reside on
the heap instead of the stack because of the memory limitations static allocation has
on QCDOC we mentioned earlier. An example of allocating the main buffer
masterbuf of size MxN to the heap is (figure 16)

Figure 23 Dynamically allocating a MxN buffer

We can no igure 18)
shows the alization

volve scattering the image data for processing to the nodes then gathering the

ata from file at a different offset instead. This parallel

ro

w focus on message passing aspects of the port. The schematic (f
 communication patterns of the original code. Startup and fin

in
results is done with point to point messages.

Point to Point

Nearest-neighbor

Global Sum

Point to Point

double **masterbuf;
masterbuf = (double **) qalloc(QFLAGS, M*sizeof(double));
masterbuf[0] = (double *) qalloc(QFLAGS, M*N*sizeof(double));
for(i=0;i<M; i++){
 masterbuf[i] = masterbuf[0] + (N)*i;
}

Figure 24 Communication Pattern of Original Code

In the original code, the image dataset is then read into a master buffer on the
processor of rank 0, and broadcasted to the other processors using MPI_Bcast. The
equivalent in QMP is a QMP_broadcast(). We changed the original code, so that
all the nodes read the image d

 31

read is advantageous in several ways. We first get rid of the inefficient broadcast

ifferent approach. The alternative to using the
ollective routines we implemented in section (3.2) has to do with an algorithmic
hange: we would like to work on a dataset that is much larger than the memory

rite their own files at the end of the
n. This is not a port change but an algorithmic change which one would expect to

per

Thi ith
the m

Figure 25 Parallel read of image data snippet

Reading in parallel is easier to implement than writing in parallel because writing
brings out coherency issues with buffering at different levels of the system. So we
eliminated that difficulty by having each processor write his individual file. The
complete image can then be recreated by combining the output images in a
post-processing phase using a standard open source image processing package [17].

In addition, instead of always reading data from an image dataset a random number
(appendix link) generator was used e buffers instead. This is done via
the function rndm_data_fill() which fills the supplied buffer with random data
of type double. This is not a performance critical part of the code, but for many runs
initializing the buffe . This allows us to

operation, which in the event the image data cannot fit into the memory of the root
node because impractical, and take advantage of a parallel I/O. No time is lost
broadcasting or even scattering the input data to the nodes. Instead the nodes fill their
buffers themselves.

We can therefore replace the MPI collective communication routines of
MPI_Scatter() and MPI_Gather() with the ones we have written for QCDOC.
For this kernel we went for a d
c
c
available on one processor and the gather and scatter routine run into memory
problems when reading large amounts of data.
So the approach we opted for was to have the nodes read-in the image data from
separate offsets of the data file and separately w
ru

fo tectures [19].

s
nput file shown (figure 20)

 int top=myrow*ny,

rm better on several archi

is done in the code by calling the qmp_datread_offset() function w
ain algorithm for reading at the right offset of the i

 b
 l
 right=(mycolumn+1) * nx;

 if(i<right && i>=left && j< bottom && j>=top)
 x[(j-top) + ny*(i-left)] = t;
 }
 }
 QMP_barrier();

ottom=(myrow+1)*ny,
eft=mycolumn * nx,

 /* read data into buffer at different offset */
 QMP_barrier();
 for (j=0; j<N; j++) {
 for (i=0; i<M; i++) {
 fscanf(fp,"%d", &t);

to fill the nod

rs with random data is a matter of convenience
skip the I/O aspect to focus on the performance at the computation and messaging
level. Also, it allows us to vary the dataset size that we are considering without
having to generate an image of the required size.

 32

Now that the two point to point steps of the program (figure 18) have been replaced
by parallel I/O to fit bigger data into the processing nodes, faster and achieve better
scalability, we can focus on the core part of the port, which involves the nearest
neighbor communications and the global sum.

Figure 26 Communication pattern of QCDOC computational loop

The MPI environment is initialized and a two dimensional Cartesian communicator is
created with defined data types for

Nearest-neighbor
Communications

Global Sum for
Delta Update

vertical (contiguous) and horizontal
on-contiguous) halo swaps. Each node’s neighbors (up, down, left, right) are

to
communicators in QMP, but a Cartesian topology is defined by mapping the machine
dimensions and a ns accordingly. For example, on a 1x1x1x2x2x2
six dimensional map the application dimensions to a two
dimensional topo

We then have a 4x2 two dimensional application topology.

The horizontal and vertical halo swaps are performed using calls to non-blocking MPI
sends and receive nd() and MPI_Irecv() in the original code.

(n
identified using MPI_Cart_shift. The equivalent in QMP involves setting up the QMP
environment with a call to QMP_init_msg_passing(). There is no equivalent

pplication dimensio
machine partition, we
logy.

qpartition_re

s using MPI_Ise

Figure 27 Halo swapping with QMP

In these send/receive constructs the direction dir and the sign isign indicate the
axis along which data is being communicated and in which direction. This allows one
to specify to which neighboring node the messages should be sent.

QMP_start(mh);
QMP_wait(mh);

map –X45 –Y0123

mm = QMP_declare_msgmem(&old[Mp][1], (Np * sizeof(double)));
mh = QMP_declare_send_relative(mm, dir, isign, 0);

QMP_start(mh);
QMP_wait(mh);

mm = QMP_declare_msgmem(&old[Mp + 1][1], (Np * sizeof(double)));
mh = QMP_declare_receive_relative(mm, dir, isign, 0);

 33

Figure 28 Strided halo swap with QMP

ation of summing data of type double is performed.

Lastly, in the original co data to the processor of
rank 0 using non-blocking point to point communications, and the rank 0 rebuilds the

3

3
A
d

mm = QMP_declare_strided_msgmem(&old[1][Np], sizeof(double), Mp,
((Np+2) * sizeof(double))); /* send down */
 mh = QMP_declare_send_relative(mm, dir, isign, 0); /* send down
*/

QMP_start(mh);
QMP_wait(mh);

mm = QMP_declare_strided_msgmem(&old[1][Np + 1], sizeof(double), Mp,
((Np+2) * sizeof(double))); /* recv down*/
mh = QMP_declare_receive_relative(mm, dir, isign, 0); /* recv down
*/

QMP_start(mh);
QMP_wait(mh);

A call is then made to the update_delta() function which computes delta (3), the
termination criterion which is initially set at a tolerance of 0.03. The update of a
tolerance level “delta” requires a global reduction which is done in the orginal MPI
code using MPI_Allreduce(). The QMP equivalent simply involves calling

The address of the variable to be summed and updated is passed as a parameter.
This shows how the oper

QMP_sum_double(&ldeltasq);

de, the compute nodes return their

master buffer and writes the processed image to disk.

The correctness of the program is verified by the initial image outputs, and tests on
different sized images, before switching to filling the buffers with data generated
randomly.

.4

.4
 f e-dimensional
is m (DFT) (4) and its inverse.

. A Fast Fourier Kernel

.1. Description
ast Fourier transform code is an efficient algorithm to find the on
crete Fourier transfor

()  N∑=
x

exfkf)((4)

FFTs are of absolute importance to a wide variety of scientific ap





 ⋅
⋅

kxi π2~

plications ranging
om signal processing to computational chemistry and finding solutions to partial

differential equations. Despite the reliance on FFTs for scientific applications, they
often present a key performance bottleneck.

fr

 34

T udy. They have collective
c l
operations on the data. Also the FFT itself is relatively computationally demanding.

Let us briefly look describe FFTs before we look at how we ported the FFT code to
QCDOC.

M e
c o
one-dimensional FFTs.





 ⋅

+
⋅

⋅
lykxi ππ 22~

his makes looking at FFTs interesting in our st
ommunication features which include scattering, gather and performing AlltoAl

ultidimensional FFTs can be built on top of one-dimensional FFTs. So if w
der a two-dimensional FFT (5), then it can be built as a sequence of twonsi

(

y x

Mlkf ,) ∑∑ = Neyxf),((5)

This can be rewritten as (6)

()






 ⋅
⋅






 ⋅
⋅

⋅





=∑ ∑ M
lyi

N
kxi

eeyxlkf
ππ 22

),(,~

y x

f (6)

 (7)

o that reaching a solution involves working with the partial Fourier transformS

()






 ⋅
⋅

⋅= ∑ M
lyi

eykflkf
π2

),(ˆ,~
y

 (7)

s how two-dimensional FFTs can be calculated as a series of two
ne-dimensional FFTs.

arallel computers is that each FFT is trivially

arallel in along a row or column of the matrix a fact that can be exploited be highly
exploited for parallel performance.

he FFT program we consider is a simple FFT code that does not implement a highly
performant FFT [19]. The motivation is not to implement a performant FFT but to
understand the porting issues and to put to use our simple c
routines.

changes. In that sense the port involves replacing the collective communication

his showT
o

What makes this more appealing to p
p

3.4.2. Implementation

T

ollective communication

We do not do any changes to the FFT algorithm that is supplied with the code as it is
written in C and ran immediately on the different architectures without requiring any

 35

routines used in the FFT kernel with the appropriate QMP and qmemcpy based calls.

Figure 29 Allocating the a, b two-dimensional buffers onto the heap

After the image data set is initialized to a point source, and the twiddle factors are
pre-computed, the communication environment is setup by calling

The two-dimensional image is the distributed from the master processor by rows to
the available processors (figure 23).

Statically allocated arrays are replaced (figure 28) in order to be able to run bigger
problem sizes without facing the memory limitations available on the stack on
QCDOC stack.

 a = (mycomplex **) qalloc(QFLAGS, IMAGE_SIZE*sizeof(mycomplex));
 b = (
 a[0]

mycomplex **) qalloc(QFLAGS, IMAGE_SIZE*sizeof(mycomplex));
= (mycomplex *) qalloc(QFLAGS, IMAGE_SIZE*IMAGE_SIZE*sizeof(mycomplex));

 b[0] = (mycomplex *) qalloc(QFLAGS, IMAGE_SIZE*IMAGE_SIZE*sizeof(mycomplex));
 for(i=0;i<IMAGE_SIZE; i++){
 a[i] = a[0] + (IMAGE_SIZE)*i;
 b[i] = b[0] + (IMAGE_SIZE)*i;
 }

mycom.start();

Figure 30 Scattering to available processors of image data by rows

 called to distribute the input matrix by rows to the

ced by a call to

MPI_Scatter() is originally
available processors.

MPI_Scatter((char *) a, IMAGE_SLICE * IMAGE_SIZE * 2, MPI_DOUBLE,
 (char *) a_slice, IMAGE_SLICE * IMAGE_SIZE * 2,
 MPI_DOUBLE,SOURCE_PROCESSOR, MPI_COMM_WORLD);

This is repla

 36

he image is then transposed using the MPI_Alltoall() function, which
part

This is replaced by a call to

Each processor then performs a nal FFT but on the columns of

inally the columns of the image a collected back to the master processor (figure 27)
and the output image is tested for correctness.

Each processor then performs a one-dimensional FFT on the rows of the local image.

mycom.scatter(numtasks, (char *)*a_slice, SOURCE_PROCESSOR,
 (char *)*a, IMAGE_SLICE * IMAGE_SIZE * 2, sizeof(double));

T
itions the intermediate image into columns

MP
 E_SLICE * IMAGE_SLICE * 2, MPI_DOUBLE,

I_Alltoall(a_chunks, IMAGE_SLICE * IMAGE_SLICE * 2, MPI_DOUBLE,
 b_slice, IMAG
 MPI_COMM_WORLD);

mycom.alltoall(numtasks, *b_slice, a_chunks, IMAGE_SLICE *
IMAGE_SLICE * 2, sizeof(double));

 s iecond one-dimens o
the local image.

F

Figure 31 Gathering of output matrix by rows to master processor

ils of the run are printed out to screen.

The processed image columns are lastly gathered back to the master processor using
MPI_Gather, and timing deta

 37

his translates to

T the
M ent
is stopped

 of the problems encountered while porting.

hmark codes. Also despite the fact that
a C++ compiler is present, there is no C compiler, therefore requiring minor
adjustment to make the C code work.

 The lack of MPI implementation for QCDOC is clearly a porting drawback. Its

availability would have made our work more straightforward, as well as the
machine more accessible. Nevertheless we understand that implementing MPI
for QCDOC was never part of the project.

 The lack of built-in, high-performance point-to-point communications is a key

drawback to making porting a more straightforward task.

 Often used memory automatically goes to the higher levels of cache on cache

based architectures for re-use based on the principle of data locality. In the
case of QCDOC because of the absence of L2 and L3 cache, we must
explicitly place the data onto the EDRAM instead of the DDR-SDRAM to
take advantage of fast memory. In the following chapter we discuss the
performance benefits we obtain from doing this.

T

mycom.gather(numtasks, *a, DEST_PROCESSOR, *a_slice, IMAGE_SLICE *
IMAGE_SIZE * 2, sizeof(double));

he correctness of the program is verified initially by comparing the outputs of
es, and lastly the communication environmPI and QMP runs on different machin

mycom.stop();

MPI_Gather(a_slice, IMAGE_SLICE * IMAGE_SIZE * 2, MPI_DOUBLE,

 DEST PROCESSOR
 a, IMAGE_SLICE * IMAGE_SIZE * 2, MPI_DOUBLE,

, MPI COMM WORLD);

3.5. Porting Issues

This is a summary

 Initially the lack of a Fortran compiler eliminated a wide class of applications
that were interesting to consider as benc

 38

4. lysis

 Bandwidth

 benchmark on QCDOC using the fast
DRAM) and slow (DDR-SDRAM) memory, as well as on the Bluegene system

e two levels of optimization were used, the default optimization and the
optimization level 3.

he problem size considered for the STREAM dataset is of 16MB for the Bluegene
stem. This number is big enough to be suitable for this benchmark, giving a factor

 on Bluegene which is the 4MB L3.

or QCDOC, the problem size is of 3MB in order for it to fit into the EDRAM runs,

 Performance Results and Ana

4.1. Memory

e present the results (figure 32) of the streamW
(E

The codes were compiled on QCDOC with the highest optimization level –O6.
On Bluegen

T
sy
of 4 times the largest cache

F
and it is of 16MB for the runs made on the DDR-SDRAM.

0

400

1200

1600

2000

Triad
Operation

M
B

/s

BGL - optimized

STREAM Benchmark

QCDOC (DDRAM)

QCDOC (EDRAM)

BGL

800

Copy Scale Add

Figure 32 STREAM on Bluegene and QCDOC

he results match our initial expectation of the fast EDRAM memory performing
etter that the DDR-SDRAM on QCDOC. We notice that the fast EDRAM memory is

around 3 times slower than the DDR-SDRAM which matches the system design.

Better results for QCDOC where obtained [1] by using optimization techniques such

T
b

as loop unrolling and data prefetching which increased the average memory
bandwidth up to 1024 MB/s. Additionally using assembly language optimizations the
memory bandwidth was pushed up to 1670 MB/s.

The Bluegene results however are far better than those of QCDOC and in comparison,
hat the clock ratio of 7/4 that is expected.

his does not meet our expectations. It indicates that the memory architecture of

he
aximum system memory bandwidth.

 yields an appreciable factor increase in performance.

ons, problem sizes, and
ptimizations flags.

For QCDOC, the usage of both fast EDRAM memory and slow DDR-SDRAM
memory was examined. This is indicated in the graphs by QCDOC (QFAST) for the
EDRAM and QCDOC (QCOMMS) for the DDR-SDRAM.

In order to measure the kernel performance we start by looking (figure 33) at the
parallel speed-up we are obtaining by considering the equation (8).

the QCDOC performance is poorer t

T
QCDOC is not fully exploited through the GNU compiler, whereas better
performance is achieved with the Bluegene system compilers to efficiently exploit t
m

Nevertheless the results show that despite the lack of L2 and L3 cache on QCDOC
using the fast memory

4.2. Image Processing Kernel

In trying to understand the behavior of the image processing code under the different
platforms, we looked at a different number of iterati
o

),(
)1,(),(

PNT
NTPNS = (8)

This is the ratio of the execution time on one processor over the execution time on P
processors for the problem size N.

 40

0

10

0 100 200 300 400 500 600
ocessors

QCDOC (QCOMMS)

HPCx

Parallel Speed-up
35

25

30 QCDOC(QFAST)

BGL Speedup

15

20

Sp
ee

d-
up

5

Pr

Figure 33 Parallel speed-up of image processing kernel

cessors increase.

This shows that QCDOC with the DDR-SDRAM is obtaining a good speed-up factor
as the number of pro

Parallel efficiency is equal to the speed-up divided by the number of processors P. It is
expressed as in (9)

),(

),(
PNPTP

PNE ==)1,(),(NTPNS (9)

Parallel efficiency decreases with the number of processors, but as with the problem
sized increases we gain efficiency according to Amdahl’s law.

 41

Parallel Efficiency

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 100 200 300 400 500 600
Processors

Ef
fic

ie
nc

y
QCDOC (QCOMMS)

QCDOC (QFAST)

BGL

HPCx

Figure 34 Parallel efficienc processing kernel

up in the Jacobi algorithm part of the image
rocessing code, it matches with the overall kernel performance.

y of image

If we look (figure 35) at the speed-
p

Comp Speed-up

0

10

20

30

40

50

80

90

0 100 200 300 400 500 600
Processors

Sp
ee

d-
up

QCDOC (QCOMMS)

HPCx

Figure 35 Computational speed-up of image processing kernel

By considering the Time x Processors graph (figure 35) at a logarithmic scale though
we can better appreciate the overall performance of the code on the different
architectures. This not only shows how well the code is scaling, but always gives a
clearer view of how fast the kernel is actually running too.

60

70 QCDOC (QFAST)

BGL

 42

Time*Procs

100

1000

10000

100000

1 10 100 1000
Processors

Ti
m

e*
Pr

oc
s

(s
)

QCDOC (QCOMMS)

QCDOC (QFAST)

BGL

HPCx

Figure 3 kernel

d the HPCx system.
espite that QCDOC scales pretty well with the number of processors, this is mainly
ue to its mesh based communications network.

Using the DDR-SDRAM with QCDOC offers actually scaling better, but at the cost of
a worse performance than if the fast EDRAM was used instead.

4.4. FFT Kernel
The input matrix considered for our comparison runs contains 1024x1024 complex
elements.

We start by looking at (figure 37) the results of the run on QCDOC with two varying
configurations. The first one involves 32 processors configured in a 4x8 layout and
the second consists of 64 processors in an 8x8 layout.

Lattice
Size

Processors
(layout)

Scatter
Time

1d-fft-row
Time

Transpose
Time

1d-fft-column
Time

Gather
Time

Total
Time

6 Time * Processors logarithmic plot for image processing

Here the flatter curve indicates better scaling of the kernel. Now we can clearly see
that the QCDOC runs are being outperformed by Bluegene an
D
d

1024x1024 32 (4x8) 0.888968 0.154458 23.08995 0.165683 0.920951 25.22001
1024x1024 64 (8x8) 0.882371 0.077472 24.015203 0.083274 0.925177 25.983497

Figure 37 FFT on QCDOC using qmemcpy based routines
The first thing to notice is that the dominant factor is the transpose time. That is the

kernel performance is communications limited. As the number of processors increases,
that time is also increasing.

This clearly shows that our AlltoAll() routines is not efficient enough. Whereas the
catter and gather routines seem to be performing better. s

 43

Fast Fourier Transform (1024x1024)

0%
10%
20%

30%
40%
50%
60%
70%

80%
90%

100%

4 8 16 32Processors

Ti
m

e
(s

)

gather
1d-fft-column
transpose
1d-fft-row
scatter

Figure 38 FFT on BlueGene

 we look at the performance of the FFT code on Bluegene (figure 38), we see an

ber of processors double. Scaling
erformance is being gained but at the price of increasing time spent in collective data

 brief, the serial performance on the QCDOC runs performance scaled reasonably
well whereas the transpose did not.

If
increase in the time taken by the gather routine as the number of processors increases.

Similarly to QCDOC though, the serial part of the code performing the
one-dimensional FFTs is being halved as the num
p
movement communications.

In

 44

5. Conclusions

5.1. Summary of our Contributions

In this work we have achieved our goal of porting different computational kernels to
QCDOC. This has allowed us to become more familiar with porting parallel codes to
QCDOC, specifically porting MPI codes to QMP.

This work has shed the light on the issues involved in the porting process, such as the
unavailability of general collective communication routines on QCDOC. We therefore
made a first attempt to add the required collective communication routines using the
convenient qmemcpy routine because it was available and easy to use.

We also looked at the memory ed on QCDOC. This showed
s that codes can benefit greatly from running on QCDOC by exploiting the fast

astly although the Gather and Scatter routines which are not performance critical
 does needs to

ke

 to look further into optimizing the AlltoAll
ommunication on QCDOC. The fact that there is no standard optimized AlltoAll
ommunication on QCDOC makes the system less attractive for a large number of
ientific applications that require it. Probably the next milestone should focus on
aking optimized collective communication routines available.

 placement techniques us
u
EDRAM memory available on the system.

L
performed well, we noted that the performance critical AlltoAll routine
be improved in order to allow a greater number of scientific applications to ta
advantage of QCDOC.

5.2. Limitations and Future Directions
The limited time did not allow us
c
c
sc
m

6. Appendix

6.1. Code Fragments

6.1.1 Timing Routine

/* timing function */
ouble d

get_current_time() {

.1.2 Basic SCU Communication Example

6.1.3 Jacobi Update

struct timeval tv;
gettimeofday(&tv, 0);
return (double)tv.tv_sec + tv.tv_usec(1.e-6);

}

6

#include <stdio.h>
#include <qcdocos.h>

/* compute jacobi */
void
compute_jacobi(int Mp, int Np, double ** old, double ** edge, double ** newb) {

 int i, j;

 for (i = 1; i < Mp + 1; i++)
 for (j = 1; j < Np + 1; j++)
 newb[i][j] = 0.25 * (old[i - 1][j] + old[i + 1][j] + old[i][j - 1]
 + old[i][j + 1] - edge[i][j]);
}

#include <qalloc.h>

 /* allocate and fill communication buffers */
 mybuffer1 = (char *) qalloc(QNONCACHE|QCOMMS|QFAST,BUFFERSIZE);

FFERSIZE);
queID());

 send.TransComplete();
 receive.TransComplete();
 printf("mybuffer1: %s\nmybuffer2: %s\n",mybuffer1,mybuffer2);

 qfree(mybuffer1);
 qfree(mybuffer2);
 return 0;
}

#define BUFFERSIZE 80

int main(){
 SCUDirArgIR send, receive;
 char *mybuffer1,*mybuffer2;
 DefaultSetup();

 mybuffer2 = (char *) qalloc(QNONCACHE|QCOMMS|QFAST,BU
 sprintf(mybuffer1,"hello world from processor %d",Uni
 sprintf(mybuffer2,"incoming message will go here");
 printf("mybuffer1: %s\nmybuffer2: %s\n",mybuffer1,mybuffer2);

 /* transfer buffer1 to buffer2 down the W direction */
 send.Init(mybuffer1,SCU_WM,SCU_SEND,BUFFERSIZE,1,8);
 receive.Init(mybuffer2,SCU_WP,SCU_REC,BUFFERSIZE,1,8);
 send.StartTrans();
 receive.StartTrans();

 46

6.1.4 Parallel Read Routine

void
qmp_datread_offset(char *filename, void *vx, int M, int N, int nx, int
ny, int myrank, int ndims, int myrow, int mycolumn) {
 FILE *fp;

filename,"r"))) {

tread: cannot open \"%s\"\n", filename);
 QMP_fprintf(stderr, "check M,N values in imagempi.h\n", filename);

 }

 /
 Q

 fscanf(fp,"%d %d",&nxt,&nyt);

 int nxt, nyt, i, j=0, t;
 double *x = (double *) vx;

 if (NULL == (fp = fopen(
 perror(filename);
 QMP_fprintf(stderr, "da

 QMP_abort(1);
 exit(-1);

* read in header data */
MP_barrier();

 if (M != nxt || N != nyt) {
 QMP_fprintf(stderr,"datread: size mismatch, (n
expected (%d,%d)\n",

x,ny) = (%d,%d)

 nxt, nyt, nx, ny);

ow*ny,

 exit(-1);
 }
 QMP_barrier();

 int top=myr
 bottom=(myrow+1)*ny,
 left=mycolumn * nx,

+1) * nx; right=(mycolumn

 /* read data into buffer */
 QMP_barrier();
 for (j=0; j<N; j++) {
 for (i=0; i<M; i++) {
 fscanf(fp,"%d", &t);

 if(i<right && i>=left && j< bottom && j>=top)

 x[(j-top) + ny*(i-left)] = t;
 }
 }
 QMP_barrier();

 fclose(fp);
}

 47

6

6 Kernel Main Loop

.1.5 Random Number Generator Routine

/* fill buffer with random data of type double */

x, int nx, int ny, int rank) {

ble *) vx;

ntf("filling buffers with %dx%d of random data\n", nx, ny);

me */
t<unsigned>(time(0)*rank-(rank%4)));

of type double */
for (i=0;i<nx * ny;i++)

0);

void
rndm_data_fill(void *v

 int i,j;
 double *x = (dou

 pri

 /* seed based on current ti
 srand(static_cas

 /* fill array with random data

 x[i] = (double) (rand()%24

}

.1.6 Image Processing

/* loop over iterations to recreate the image from the edges */
, iter = 1; iter <= MAXITER && delta > TOL; iter++) { for (delta = 10.0 * TOL

 comm_time-=get_current_time();

Mp, Np, old, mycolumn, columns);
p(mm, mh, Mp, Np, old, myrow, rows);

time();

me();
 compute_jacobi(Mp, Np, old, edge, newb);

compute and update delta */
ta_time-=get_current_time();

delta(M, N, iter, rank, Mp, Np, old, newb,delta);
delta_time+=get_current_time();

 /* set old array equal to newb, excluding halos *
 * copy old array back to buf, excluding halos */
 buf_update_time-=get_current_time();
 for (i = 1; i < Mp + 1; i++)
 for (j = 1; j < Np + 1; j++) {
 old[i][j] = newb[i][j];
 buf[i - 1][j - 1] = old[i][j];
 }
 buf_update_time+=get_current_time();

 }
 time_end = get_current_time();

 do_left_right_swap(mm, mh,
 do_up_down_swa
 comm_time+=get_current_

 comp_time-=get_current_ti

 comp_time+=get_current_time();

 /*

 delta = update_
 del

 48

6.2. Timetable

T asks Resour

Analysis Code
I Code to

C/QMP on QCDOC
Q

 and

Report

Write User Report an

2 weeks Compare Results with
Other Systems**

Port Kernel to Other
Platforms and Analyse

entative Schedule Objectives T ces
3 weeks Implement Image Port C/MP C/MPI Code, QMP

Standard, and
CDOC 64 node

Partition
1 week Update Write User Manual, Experimental Data

d Literature Review Documentation
Produce Interim

3 weeks Implement another - -
kernel

Performance/Issues

QCDOC, BlueSky,
PCx, Lomond H

3 weeks Produce Thesis Paper Write Thesis Paper Experimental Data
And Literature

Review

6

od Impact Mitigation

.3. Risk Analysis

Risk Likeliho
Running overtime in 60%

porting a kernel
Key project goals are

not satisfied
Scrap one of the

kernels
Running late in 40%

gathering data for
analysis

Write up is delayed
because of lack of

results

Using meetings and
feedback to drive

regular results findings
Communication
tines are not highly

60%
R thesis in presenting

tines

s on porting the
kernels.

Communication
routines are additional

goals.

Limited impact from Focu
ou

effective new rou

 49

6.4. List of Acronyms

ccess
RAM: Dynamic Random Access Memory

d D
EPCC: h Parallel C
FFT: Fast Fourier Transform
FLOP: Floating Point Operation
GCC: Gnu C Compiler
GNU: t Unix
HPC: High Performance
JTAG: Joint Test Action G
MIMD: Multiple Instruction Mul ta
MPI: Passing In
QCD: Quantum Chromo Dynam
QCDO tum Chr
QDP: QCD Data Parallel
QMP: QCD Message Passing
QOS: QCDOC Operati
RISC: Reduced Instruction Set Architecture
SCU: Serial Communications Unit

DMA: Direct Memory A
D
EDRAM: Embedde RAM

 Edinburg omputing Centre

 Gnu is No
 Computing

roup
tiple Da

Message terface
ics

C: Quan omodynamics On a Chip

ng System

 50

7. Bibliography
] Overview of the QCDSP and QCDOC computers, P. Boyle et Al. IBM Research

ol. 49, No. 2/3 March/May 2005
/492/boyle.pdf

[1
and Development Journal V
(http://www.research.ibm.com/journal/rd)

opy routine source code,
doc/qmemcpy/include/qmemcpyoc.C

[2] Michael Creutz, qmemcpy memory c
(http://thy.phy.bnl.gov/~creutz/qc)

ebsite, (http://www.hpcx.ac.uk/services/hardware

[3] The HPCx System W)

 Blue Gene system website,
rvices/BlueGene

[4] The University of Edinburgh
(http://www.epcc.ed.ac.uk/computing/se)

d, Version 1.1, The Message Passing

, István Montvay and Gernot Münster, Cambridge

] Lattice gauge theories -- an introduction, H.J. Rothe, World Scientific, Singapore,
ew Jersey, London, Hong Kong (1992).

] QCDSP Machines: Design, Performance and Cost, D. Chen et Al. ACM/IEEE
C97, 1998

] QMP: LQCD Message Passing API (Version 2.0) Oct 29, 2004
.lqcd.org/qmp/QMP-2-0-Introduction.html

[5] MPI: A Message-Passing Interface Standar

1995.

Interface Forum, June 12,

[6] Quantum Fields on a Lattice
University Press 1994

[7
N

[8
S

[9
(http://www)

[10] Message passing on the QCDSP supercomputer, Michael Creutz, Nuclear
Physics Proceedings Supplement, volume 83, 2000, hep-lat/9908024

[11] An Introduction to Using the QCDSP Computer, Balint Joó, Robert Mawhinney,
(http://quark.phy.bnl.gov/www/docs/user_guide_v0.ps.Z)

[12] QCDOC Quick Start Guide, Balint Joó,
(http://www.ph.ed.ac.uk/~bj/QCDOC_quick_start.html)

[13] Using QCDOC, Michael Creutz,
(http://quark.phy.bnl.gov/~creutz/qcdoc/using.txt)

[14] An Introduction to the QCDOC Computer, Chulwoo Jung,
(http://quark.phy.bnl.gov/~creutz/qcdoc/qos-1.ps)

[15] Joachim Hein, Mark Bull, Capability Computing, Achieving Scalability on over
1000 Processors, HPCx Technical Report HPCxTR0301, 2003,
(http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0301.pdf)

[16] I geMagick website, (http://www

[17] STREAM benchmark website, (ht

ma .imagemagick.org/script/index.php)

tp://www.cs.virginia.edu/stream/)

pic=/com.ibm.cluster.es

[18] IBM Engineering and Scientific Subroutine (ESSL) Library Book Online,
(http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp?to
sl.doc/esslbooks.html)

[19] Two-dimensional fast Fourier Transform C code, George Gus

ciora,
(http://www.llnl.gov/computing/tutorials/mpi/samples/C/mpi_2dfft.c)

[20] "File I/O from multi processor jobs", Joachim Hein,
HPCx Technical Report HPCxTR0306, 2003,

xTR0306.pdf (http://www.hpcx.ac.uk/research/hpc/technical_reports/HPC

)

 52

http://www.research.ibm.com/journal/rd/492/boyle.pdf
http://thy.phy.bnl.gov/~creutz/qcdoc/qmemcpy/include/qmemcpyoc.C
http://thy.phy.bnl.gov/~creutz/qcdoc/qmemcpy/include/qmemcpyoc.C
http://www.hpcx.ac.uk/services/hardware
http://www.epcc.ed.ac.uk/computing/services/BlueGene

	1.Introduction
	2.Background
	2.1. Quantum Chromodynamics
	2.2. The QCDOC System
	2.2.1. Hardware Architecture
	2.2.2. Software Architecture

	3.Working on QCDOC
	3.1. Submitting Jobs
	3.2. Machine Topologies
	3.3. Memory Subsystems
	3.4. Message Passing
	3.4.1. QMP
	3.4.3. QMP and MPI

	3.Porting Computational Kernels
	3.1. STREAM Benchmark
	3.2. Collective Communication Routines
	3.2.1. Description
	3.2.2. Implementation

	3.3. An Image Processing Kernel
	3.3.1. Description
	3.3.2. Implementation

	3.4. A Fast Fourier Kernel
	3.4.1. Description
	3.4.2. Implementation

	3.5. Porting Issues

	4.Performance Results and Analysis
	4.1. Memory Bandwidth
	4.2. Image Processing Kernel
	4.4. FFT Kernel

	5.Conclusions
	5.1. Summary of our Contributions
	5.2. Limitations and Future Directions

	6.Appendix
	6.1. Code Fragments
	6.1.1 Timing Routine
	6.1.2 Basic SCU Communication Example
	6.1.3 Jacobi Update
	6.1.4 Parallel Read Routine
	6.1.5 Random Number Generator Routine

	6.2. Timetable
	6.3. Risk Analysis
	6.4. List of Acronyms

	7.Bibliography

