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Abstract 

he QCDOC system is a high end resource for computational Quantum 

s. It is interesting to examine whether one could take advantage of such 
 system for other types of scientific codes. 

sent results from our investigation on porting computational 

ommunications network and the memory subsystems. 

ap e Fast Fourier Transform kernel shows 
ood scalability of the serial part of the code, but our conveniently written collective 

his work presents a first step in understanding both the QCDOC system as well as 
e porting issues related to it. Future work can take advantage of our results to 

 exploiting this powerful QCD resource. 

 
T
Chromodynamics available today. This powerful system is purpose built for solving 
QCD problem
a
 
n this thesis we preI

kernels onto the QCDOC system, highlighting the issues involved in the porting 
process which include understanding the specifics of the system such as the 
c
 
Both computational kernels considered mimic the behavior of scientific applications. 
We achieve good results for our Jacobi kernel with nearest neighbor interaction which 
m s directly onto the system network. Th
g
communications need improvement.  
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1.  Introduction 

he QCDOC (Quantum Chromodynamics on a Chip) architecture is a special purpose 
upercomputer with more than 12000 processors and providing a peak performance of 
ver 10 TFlop/s. At the time of writing it is the largest special purpose built system in 
e UK. [1] 

CDOC is optimized for the needs of lattice QCD. The memory subsystem, 
ommunication interconnects, system software, and programming libraries are all 
esigned to strictly satisfy that goal. Any additional feature not needed for lattice 
CD that would make the machine more general purpose has been left out to keep the 

project costs to a minimum. 
 
We investigate the issues encountered when porting computational kernels that mimic 
the behavior of a wide class of scientific applications onto QCDOC. Now that the 
system is available, this allows us to see whether applications QCDOC was not 
initially designed for can use the system. The process of porting involves 
understanding and dealing with any software and hardware issues encountered along 
the way. 
 
Another aspect of this work involves benchmarking the ported kernels against other 
High Performance Computing (HPC) systems available at the Edinburgh Parallel 
Computing Centre (EPCC); they include a p690 cluster (HPCx) [3] and a BlueGene/L 
system (Bluesky) [4]. 
 
Our work is related to the work of Michael Creutz at the Particle Theory Group at 
Brookhaven National Laboratory (BNL) who wrote a minimal port of MPI to 
QCDOC using his own memory copy routine [2]. His works initially began on 
QCDSP (QCD on a Digital Signal Processor), a predecessor of QCDOC. 
 
The reader is expected to be familiar with the Message Passing Interface (MPI) [5]. 
All supplied source code and programs are written in C/C++. Courier New font is 
used to indicate source code snippets and the names of subroutines. 
 
In section 2 we introduce some background information on QCD. This should give 
the reader an idea of the type of problems QCDOC was designed to solve. We then 
present the QCDOC hardware architecture, the software architecture, the approaches 
to programming the system, and its message passing libraries.  
 
Section 3 presents the different computational kernels that will be examined. The first 
kernel is a Jacobi iteration type code. The second kernel is a two-dimensional fast 
Fourier transform (FFT). Section 3 also presents our work with collective data 
movement routines. Lastly we present the issues that we faced in the porting process. 
 
Section 4 presents our results and analysis. A performance comparison is done against 
ports onto the different HPC platforms available at EPCC for the image analysis and 
the FFT kernels. Different collective communication routines based on varying 
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message passing libraries are also benchmarked.  

n itations, and suggests future directions of 
search. 

 
Sectio 5 summarizes our work, its lim
re
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2.  Background 
 
2.1. Quantum Chromodynamics 

CD is a theory which describes one of the fundamental forces of nature called the 
trong interaction. It was proposed in the early 1980s by David Politzer, Frank 

ilczek and David Gross as a theory to understand the structure of protons, neutrons 
nd other particles. It uses Quantum Field Theory (QFT) to describe the interactions 
f quarks and gluons which are considered today as elementary particles. QCD is an 

portant contribution to the Standard Model of elementary particle Physics. 

vestigating QCD for low momenta as typical for Hadrons such as Protons and 
eutrons using analytic techniques in continuous space-time proves difficult. This is 
hy Lattice QCD as a discretisation of QCD onto a lattice mesh is used instead [6]. 
y formulating QCD on a space time lattice this opens the problem to be tackled 
rough simulations using modern computers. 

 numerical method primarily used in lattice QCD is the Hybrid Monte Carlo 
lgorithm to perform the Feynman path integral in a space-time discretised within a 
ur-dimensional Cartesian lattice or Cartesian grid. The input parameters consist of 

uark masses and the strength of the coupling constant [7].  

he nature of the problem involved in lattice QCD suggests that a minimal set of 
atures are required for a special purpose QCD machine. These include efficient 

earest-neighbor communications, a minimal set of collective communications, 
odest input/output (I/O) requirements, and as much computational throughput as 

ossible. 

.2. The QCDOC System 
he QCDOC system was developed by a collaboration of Columbia University, 
KQCD, the RIKEN-BNL Research Centre and IBM. It builds on the work of the 

QCDSP supercomputer [8], a four-dimensional mesh machine built in 1998 which 
won the Gordon Bell Prize award that year for best price/performance machine. 
QCDSP proved that a massively parallel processor could be built to provide low 
latency, high performance, low power consumption, and high integration.  
 
The design goals of QCDOC are the same as its predecessor, the main difference 
being greater transistor density and clock speeds, as well as a higher bandwidth, lower 
latency, and a more flexible communications network. QCDOC achieves an equally 
important price/performance ratio as part of its design goal by having 1$ per sustained 
Mflops. This is done by having processors clocked at around 450MHz with 2flops per 
cycle at half of their efficiency costing around $400 each [X] (1). 
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=
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e/price ratio of a single processor coupled with a 

rk hat the QCDOC supercomputer was designed. 

2.2.1. Hardware Architecture 
is based on an Application Specific 

ng point 
perations, crucial for scientific number crunching. To achieve that, a 64-bit IEEE 

C system. 

It is in this spirit of high performanc
netwo  that allows high scalability t
 

The QCDOC massively parallel computer 
Integrated Circuit (ASIC) which uses IBM System-on-a-Chip (SoC) technology. The 
ASIC allows a complete system with processor, memory, and network controllers to 
be integrated into a single chip.  
 
The main component of the QCDOC ASIC (figure 1) is an embedded IBM PowerPC 
440 CPU core. This is a 32-bit processing core that does not handle floati
o
floating point unit (FPU) is added which can supply 0.8 GFlops.  
 
An embedded DRAM chip (EDRAM) of 4 MB is connected to the cores through a 
high speed bus of 8GB/s bandwidth, in addition to a 2.6 GB/s interface to the external 
memory which is of 128MB on the UK QCDO
 
 

 
Figure 1 QCDOC ASIC – a System on a Chip [1] 

 

system a very small 
electrical and floor footprint. 
The system packaging allows for high density and integration. Two Cs r 
are packaged into a daughterboard (figure 2) with an associated dua e

Inter-node communications on QCDOC are handled through high-speed serial links at 
12 Gb/s of bandwidth. Additionally an Ethernet interface allows booting the nodes as 
well as diagnostics and I/O. 
 
The ASIC is power efficient and has a small footprint. It consumes 1-2 Watts of power 
and the size of a processor die is at 1 cm per side. This gives the 

 ASI  o nodes 
l inline m mory 
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module (DIMM) socket for each node. 32 daughterboards (figure 3) make up a 

te 
ystem (figure 5).  

 

motherboard, 4 motherboards are inserted in a backplane (figure 4), and two 
backplanes make up a crate, and two crates make up a rack to make up a comple
s

 

 
Figure 2 A QCDOC daughterboard with two ASICs and DDR DIMMs [1] 

 

 

 
Figure 3 A QCDOC motherboard mounted with 32 daughterboards [1] 

 
The system consists of three networks. The physics network consists of a 
six-dimensional bit-serial nearest-neighbor mesh. This is the high performance 
network onto which QCD problems map well. It is a very low latency network of the 
order of a fraction of a microsecond, and offers high bandwidth connections to the 
neighboring nodes. The two dimensions above the fourth dimensions offer flexibility 
in repartitioning the machine using space filling curves to reduce dimensionality (ref 
topology). This is an improvement on the QCDSP system where for each varying 
partition configuration the system had to be re-wired by hand. 
 
The control network is a 100 MB/s Ethernet tree used to boot the compute node 

he machine is accessed via a front end machine on which jobs are compiled and 

kernels, load programs and perform I/O. The global interrupt network is used for 
initial synchronisation of the system. 
 
T
submitted to QCDOC. I/O on QCDOC is also handled by an external dedicated file 
server. 
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2.2.2. Software Architecture 
Three main layers make up the QCDOC software architecture [1]. Essentially these 
layers allow for writing and building programs for the compute nodes on the front end, 
he interaction betwt een the front-end with the backend nodes and the execution of the 
ompiled programs on the backend nodes with the results outputs redirected 
ccordingly.  

 
The first layer runs on the front end machine and allows interaction with the compute 
nodes. This involves booting the backend nodes via the JTAG Ethernet interface and 
loading a run time kernel onto the systems. Managing and controlling the backend 
nodes is then done via a multithreaded program called the qdaemon and an adapted 
shell called the qcsh.  
 

c
a

 
Figure 4 QCDOC Frontend and Backend Inter on 

 
he second component is the computational node run kernel. This is a lightweight 

r codes to the backend. 
he GNU C++ and IBM xlC are offered as cross-compilers to the QCDOC compute 

P). SCU provides Direct Memory Access (DMA) 
ommands to send and receive data from a compute node to the other, while QMP 

acti

T
operating system which offers basic services such as loading programs into memory, 
accessing the on-chip network devices and servicing system calls and I/O. The 
lightweight kernel runs two threads only, one for the kernel itself, and the other for the 
running application. It does no job scheduling or swapping so that the compute node 
resources are entirely dedicated to the executing program. 
 
The third software layer is the user environment. It offers a familiar and standard 
environment for users to edit, compile, debug, and submit thei
T
nodes. Two message passing libraries allow the user to describe the exchange of 
messages between the compute nodes: the serial Communications Unit (SCU) and the 
QCD Message Passing Interface (QM
c
offers a higher level and more general interface to messaging passing which includes 
collective communications regularly used in QCD applications. 
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3.  Working on QCDOC 
 
3.1. Submitting Jobs 

 in no way all-inclusive, but rath ause of main 
onceptual sim s between QCDSP and QCDOC, an authoritative guide on 

QCDSP [11] offers a lot of additional insight. In this section we try to briefly 
round-up and complement the information representative of working with the 
machine from both what is available online an our own experience with the system.  
 
We look at the steps involved in a typical job submission and then explain the 
fundamental concept of mapping the physically allocated partition to the desired 
logical partition. 
 
Running a job on QCDOC is a straightforward procedure. The first step consists of 
reserving a partition on the system, where a partition is a six-dimensional subset of the 
available compute nodes on the system. Partitioning allows more than one job to run 
at a time. Typically small development partitions of up to 256 nodes are available for 
code development, whereas bigger partitions of 1024, 2048 and 4096 partitions are 
reserved for production QCD runs.  
 

The process of submitting jobs to QCDOC is directly linked to understanding the 
machine hardware configuration required for the application to be run.  
Documentation for using the system is available through various online short manuals 
[12] [13] [14] which are er scarce. Bec

ilaritiec

 
Number of Nodes Allocation Limits Typical Naming 

8/64/256 node machines Time limited dev/slot0-3 
rack32/crate0/slot0 

64 node machines Time unlimited acc3/slot0 status 
1024/2048/4096 

“monsters” 
Time unlimited rack33 

 

Table 1UK-QCDOC Partition Types and Limits 

 
No batch or queuing system is available on QCDOC. Currently a web-based partition 
reservation system (figure 5) is used where a user flags a partition as reserved for a 
certain amount of time to run jobs. The allocated partition should be released when 
done so that it can be allocated by another user. This process works well because of 
the relatively small and tightly integrated QCD community but it would face problems 
with a larger number of users. The allocations are sometimes reinforced with a time 
limit after which the partition is released and marked available automatically; this 
concerns smaller partitions as detailed in (table 1).  
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Figure 5 Web allocation interface 

 
QCDOC is accessible through its front end machine system, via secure shell 
connections (SSH). The front end is typically a symmetric multiprocessing (SMP) 
erver which can handle high loads of users in a reliable way. The user connects to the 
ont end system to edit, compile, debug, and submit their codes to the backend nodes. 

 
Once lo d use th ate QCDO g System 
(QOS), by sourcing the appropriate directory 
 

source /qcdoc/sfw/qos/v2.6.0/aix5.2g/scripts/setup.sh 
 
This sets up various e g. The user now has 
access to variety of commands (table 2) to that are used to configure and control the 

s
fr

gged in, the user shoul e most up-to-d C Operatin

nvironment variables and paths for compilin

machine.  
 
We will explain these commands in the remainder of this section by going through a 
typical job submission run that consists of connecting to the machine, setting up the 
partitions, compiling a program, submitting it to the backend, and finally detaching 
for the partition. 
 

qsession $QMACHINE Script to start qdaemon and qcsh 
qinit $QMACHINE Connect a qcsh session to a qdaemon 
qpartition_connect Connect to a partition 
qreset_boot Resets and boots a partition  
qdiscover Find the topology of a partition 
qpartition_remap Map a machine topology 
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qrun Run a program 
qnodes_print Print nodes information 
qdetach Disconnect from a partition 
qkill Kill a running user program 
qhelp Displays help information 

Table 2 Commonly Used Machine Configuration Commands 
The user can now bring up a partition reserved online by connecting to it using its 
unique name. The name is of the type /dev/slot0-3 or /rack32/crate0/slot0. For our 
explanation we use the environment variable name $QMACHINE to represent the 
machine’s unique name. The user then loads the desired run time kernel onto the 
compute nodes and initializes them by running 
 

 
Where the qsession script starts qdaemon and qcsh and sets the $QMACHINE 
variable to the qsession argument. qinit starts up communications with the 
qdaemon for on the allocated partition. qpartition_connect establishes a 
connection with the machine. This typical sequence of commands can be place into 
a .qcshoc file so that they get executed automatically once a qsession 
$QMACHINE command is called. 
 
The user is now connected to his partition and should define the mapping between the 

hysical machine and the desired logical machine 

here qdiscover discovers the physical machine topology by counting how many 

apping between the machine and 
pplication directions. We present the concept of mapping between the physical 

machine a  is now 
omplete with the network communications up, the application axes mapped to the 

p involves loading the appropriately cross compiled program onto the 
rocessing nodes. 

 
owerpc-gnu-elf-g++ is the cross compiler which takes the myprogram.C 

C++ program s e mpiled 
executable call
 

 

$ qsession $QMACHINE  
$ qinit $QMACHINE 
$ qpartition_connect –p 0 

p
 

                         $qdiscover 
  $qpartition_remap –X45 –Y0123 

 
W
nodes exist in each of the six physical machine dimensions. And 
qpartition_remap allows changing the m
a

nd the application in further detail in section 3.2. The machine setup
c
physical axes, and all the nodes run kernels ready.  
 
The final ste
p
 

   $powerpc-gnu-elf-g++ myprogram.C –o myprogram 
   $qrun myprogram 

p
ource code as an argum nt and returns a PowerPC co
ed myprogram.  

 
 myprogram$ qrun
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qrun then loads the program into each  and runs it. The output from 
node 0 or the root processor will be ech l or qcsh session only. 
The outputs fro r nodes can b e_print command.  
 
Running or han s can be signale L-C from the shell. 
The qkill pro  processes are 

rve it. 

3.2. Machine Top
  

 

s 
gy.M> Dimension 2 has length 1 nodes 

D:Partition::DiscoverTopology.M> Dimension 3 has length 2 nodes 

Figure 6 Output of qdiscove on an 8 processor partition 

Consider the six physic  through 5 and the six 
logical or application dimensions referred to as T, X, Y, Z, S and W respectively. Each 

 application code can 
es as 
ingle 

 compute node
oed to the users’ shel

m the othe e read by using the qnod

ging job d to stop by hitting CTR
gram can then be called to make sure that no run-away

still running. 
 
Once a job is completed one can detach from the machine partition using qdetach 
or simply by exiting qcsh. Lastly the user should release a time unlimited partition if 
it is no longer in use so that other users can rese
 

ologies 

Once a partition is allocated as described above, its topological configuration can be
discovered with the qdiscover command (figure 6). This shows how many nodes 
are present in each of the six physical dimensions available.  
 
QD:Partition::DiscoverTopology.M> Dimension 0 has length 1 nodes 
QD:Partition::DiscoverTopology.M> Dimension 1 has length 1 node
QD:Partition::DiscoverTopolo
Q
QD:Partition::DiscoverTopology.M> Dimension 4 has length 2 nodes 
QD:Partition::DiscoverTopology.M> Dimension 5 has length 2 nodes 

r 

 
al dimensions avai able as numbered 0l

node has a mapping between the application dimensions and the machine dimensions 
(figure 7). This way, the topology and dimensionality seen by the
be changed by remapping the machine and application directions as many tim
needed. This is done by consecutively folding the machines axes together into a s
application axis until the desired topology is reached.  
 

 
Figure 7 Mapping between machine and application dimensions 

 
For example (figure 8), we have the configuration for 2 processors in the Z dimension, 
2 processors in the S dimensio in the W dimension. Given the 
available machine space, one can setup the required application space or logical 

achine by using the qpartition_remap command to map the allocated machine 

n and 2 processors 

m
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to the logical one. 
 

 
Figure 8 Mapping an 8 processor six dimensional partition to a 4x2 logical partition 

$ qpartition_remap –X45 –Y0123 

ing 
al 

In the arguments o esents a logical 
achine dimension is followed by one or more numbers that represent the physical 

 
In order to have a 4x2 two-dimensional logical machine, we would use the command 
 

 
This would map the physical dimensions 4, and 5 to the X logical dimension mak
it of size 4 (2x2) processor dimension, and this would map the 0, 1, 2 and 3 physic
dimensions to the Y logical dimension making it of size 2 (1x1x1x2). 
 

f qpartition_remap, each letter which repr
m
dimensions. As you see, more than one physical dimension can be mapped or folded 
against the same logical dimension. This mapping of several hardware dimensions 
into a single logical dimension is done by using space filling curves. We can see in 
(figure 8), how a two-dimensional topology is folded into a one-dimensional one. 

 

 
Figure 9 Folding from 2D to 1D [1] 

 
his folding of machine dimensions into logical dimensions which is done by T

mapping more than one physical axis to the same logical axis is a great improvement 
in flexibility over the previous QCDSP system where a time consuming rewiring 
process was required for each configuration. 
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If we consider another example, running   

qpartition_remap -T345 -X1 -Y2 -Z0 
 

This will give a configuration for an 8x1x1x1x1x1 machine logical machine.  
 
With the six-dimensional physical machine, we can therefore map the physical axes 
into dimensionalities ranging from one dimension to 6 dimensions, such as for 
example (figure 10) mapping folding a three dimensional machine into a one 
dimension. If any mappings are incorrect, qpartition_remap will notify the user 
that the mapping cannot be made. 
 
 

     

 

   
Figure 10 Folding from 3D to 1D [1] 

 
 
 

low 
memory. The fast memory uses the 4MB o emory consists 
of the 128MB DDR-SDRAM. 96MB of which are reserved for dynamic allocation 
and around 16 MB for static allocation as of QOS 2.6.0. The system L1 cache is 
partitioned into 31KB of normal data + 1 KB of streaming data. As noted earlier, the 
bandwidth of the EDRAM is around 3 times that of the DDR-SDRAM. 
 
In order to place data on the fast memory, we use the qalloc() routine by linking 
against the qalloc.h header file. It allows for the allocation of data on the fast and 
slow memories. The memory can in turn be freed by using the qfree()routine.  
 
qalloc() allows the programmer to choose between the memory to be used by 
passing one of three flags (f  and QNONCACHE which 

spectively represent the slow or DDR-SDRAM memory, the EDRAM and no 

3.3. Memory Subsystems 
There are two accessible memory subsystems on QCDOC: a fast memory, and a s

f EDRAM and the slower m

igure 11), QCOMMS, QFAST,
re
caching.   
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aking advantage of the fast memory is crucial to obtaining better performance from 
e system, and we will be investigating th r analysis and benchmarks. We will 

investigate the effects of using the diff inds of memory available in the 
benchmarks. 
 

3.4. Message Passing 
 
Two message passing libraries are available on QCDOC. The first one is know as the 
SCU, and the second one QMP. At the lower layer, calls to the SCU give access to 
send and receive functionality. These are asynchronous, allowing the overlapping of 
communication and computation. On top of the SCU layer is the QMP interface, a 
standard developed by unity to provide fast 
nearest-neighbor messaging and some general communications routines. We focus on 

MP for our work. 

.4.1. QMP 
ovide portable, low-latency, high-bandwidth 

 SCU and is 

e basic capability requirements (figure 12) of QMP include the availability of a 

MP also offers a few collective communication routines such as broadcast, global 
summation, global max, global reductions. Additionally QMP offers allocated 
partition configuration functions. 
   

void * qalloc (int flags, size_t bytes) 
enum { 
 
 QOMMS = 0x02, 

}; 

QNONCACHE = 0x01, 

 QFAST = 0x04, 

Figure 11 The three memory sections qalloc can reference 

 
The standard malloc routine can also be used and the memory allocated will be 
placed on the DDR-SDRAM. 
 
T
th is in ou

erent k

the LQCD research comm

Q

3
“The goal of QMP is to pr
communication routines suitable for Lattice QCD” [9] QMP is an application 
programming interface (API) optimized for the style of communication used in 
LQCD which consists of regular, repetitive communications between nearest 
neighbor nodes in an n-dimensional torus with periodic boundary conditions.  
 
This application domain specific interface is implemented in three flavors. QMP-MPI 
mplemented on top of MPI is used clusters; QMP-QCDOC uses thei

designed for QCDOC and QMP-MVIA implemented is used on gigabit Ethernet or 
VIA (Virtual Interface Architecture) clusters. For our work, we only consider 
QMP-QCDOC and refer to it as QMP. 
 
Th
barrier call to synchronize all the partition nodes, sending contiguous messages to 
neighboring nodes along a specified axis and direction, and sending non-contiguous 
messages to a neighboring node where the message consists of a set of strided blocks.  
 
Q
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head. Global operations are implemented using the store-and-forward 
apability of QCDOC. The implementation of QMP on QCDOC is complete but does 
ot contain non-nearest neighbor communications. 

ve list of the calls we used throughout our work. More 
etails are available in the QMP standard [9]. 

QMP_get_number_of_nodes() 
QMP_get_node_number() 

ocated 
achine. 

lem onto the logical machine 

erformance 

declare_msgmem() 
QMP_free_msgmem() 

 Point-
 
 Simult
 
 Separa sfers, so that 

 overheads for repeated 
transfers

 Global operations: global sum, maximum, minimum operations for 

to
Non-blocking (computation and communication can be overlapped) 

an u sfers 
Chained block/strided transfers 

te ion and commencement of tran
opened channels can be reused to minimize

-point communication 

eo s, multi-directional tran

 routines for initializat

 

integers, single and double precision numbers, and binary reductions, 
broadcast, barriers. 
Basic machine topology configuration and control

Figure 12 QMP Capabilities on QCDOC 

QMP performance in latency is close to QCDOC native calls. This allows for small 
software over
c
n
 
We present a non-comprehensi
d
 
A group of QMP calls are dedicated for initializing the message passing environment, 
specifying the machine layout, and terminating the work 
 

QMP_init_msg_passing() 
QMP_finalize_msg_passing() 

 
These calls allow the discovery of the allocated machine configuration, the node 
number of the current node. 
 
Additional calls allow the configuration of the logical layout of the machine (number 
of nodes in each direction) based on the constraints of the underlying all
m

QMP_declare_logical_topology() 
QMP_get_logical_dimensions() 

QMP_get_logical_coordinagtes() 
 
And optimally partition the lattice prob
 

QMP_layout_grid() 
 
Nearest Neighbor Communications can be declared through the following routines. 
These communications are intended to be highly repetitive in order to achieve high 
p

QMP_allocate_memory() 
QMP_delcare_strided_msgmem() 

 QMP_
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The b i

ceive_relative() 

 
Where lare_receive_from() and QMP_declare_send_to() 
whic r
they are 
 
The performance in initiating

as c send/receive operations are done using the following calls 
 

QMP_declare_re
QMP_declare_send_relative() 

QMP_dec
h a e defined in the QMP standard are not implemented on QCDOC because 

non-nearest-neighbor. 

QMP_declare_multiple() function improves  
multiple sends by collapsing them into a single call.  
 

QMP_wait_all() 

ing global operations for 
duction of maximum/minimum and collective synchronisation of the processors 

QMP_broadcast() 

 

3.4.3. QMP and MP

 is not supported because the generality it offers is not 
eeded for QCD specific codes. It is designed to offer a lightweight, efficient message 

The main difference  and MPI are that 
there are no non-near s more general. The 
generality of MPI i n run with higher 

erformance. There could have been an implementation of MPI on QCDOC but what 

Despite that, some work has b DOC by Michael Creutz [2]. 
is MPI library for QCDOC is not complete, but offers a minimal number of MPI 

y 

n of betwee a sub-optimal yet simple 
approach. 
 
 
 

Communications are started with the following calls 
 

QMP_start() 
QMP_wait() 

 
Collective communications in QMP also include the follow
re
 

QMP_sum_int() 

QMP_barrier() 

I 
 
It is natural to compare QMP with MPI, since MPI is a standard message passing 
interface used in HPC. MPI
n
passing system without implementing for example all of the semantics of MPI which 
are not needed in the context of LQCD. 
 

s with the QMP for QCDOC implementation
est neighbor communications. Also, MPI i

s not needed for QCD since leaner libraries ca
p
was wanted was an optimized messaging interface for LQCD only.  
 

een done to port MPI to QC
H
calls (table 3). The library is built on top of the SCU, and the memory copqmemcpy 
routine. They allow point to point communications to be performed at the price of 
synchronizatio n all the nodes, which makes it 
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MPI_Init MPI_Finalize 
MPI_Comm_rank  MPI_Send 
MPI_Comm_size MPI_Isend 
MPI_Get_processor_name MPI_Irecv 
MPI_Barrier MPI_Issend 
MPI_Abort MPI_Attr_get  
MPI_Reduce MPI_Bcast 
MPI_Wait MPI_Allreduce
MPI_Recv  

Table 3 MPI Functions Offered by Creutz MPI library 

 qmemcpy routine are described 
 (3.2). 

MPI_Gather MPI_Scatter 

 
We have added the following collective communication routines (table 4). Details of 
our basic implementation of these functions using the
in
 

MPI_All toallgather MPI_All

Table 4 C  Added ollective Communications
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3. Porting Computational Kernels 
 

3.1. STREAM Benchmark 
Many scientific app  memory str ming applications, as we will see 
later on in the ima l known, standard 
memory benchmark. It is ideal for studying memory performance in isolation. 

e STREAM benchmark to show us what kind of performance gains we can 
btain when using the fast ory DR-SDRAM. 

 
The STREAM benchmark program measures the sustainable memory bandwidth (in 
MB/s) and the correspo ctor kernels [17]. The 

le of thumb is to allocate an amount of memory so that each array is at least 4 times 
the size of the sum of all the last-level caches used in the run. 
 

Routine Kernel Bandwidth 
(bytes/iteration) 

Computational 
Intensity 

(Flops/iteration) 

lications rely on ea
ge processing code we study. STREAM is a wel

 
We consider the STREAM benchmark in order to highlight the memory bandwidth on 
QCDOC and see how it compares with our other benchmark systems. Specifically, we 
xpect the

o  EDRAM mem  instead of the D

nding computation rate for simple ve
ru

COPY a(i) = b(i) 16 0 
SCALE a(i) = q*b(i) 16 1 
SUM a(i) = b(i) + c(i) 24 1 

TRIAD a(i) = b(i) + q*c(i) 24 2 
Table 5 STREAM kernels details 

 
This is a serial performance code with no challenges for a parallel system per se, but 
the results will reflect the performance of the memory subsystems. 
 
We want to test the different memories so we use the qalloc routine. Some changes 
had to be made to the code to take advantage of the dynamic memory. We start by 
including the qalloc.h header file which contains all the information required to 
use the qalloc memory allocation function 

 

 
 

We define QFLAGS so that we can easily switch between testing for fast memory and 
for slow memory without having to do many changes to the code 
 

 
 
The one-dimensional buffers can then allocated by doing the following 

 

#define QFLAGS (QCOMMS|QFAST) 

#include <qalloc.h> 
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 code involve changing the static allocation of 

All to All 

nt this functionality. 

3.2.1. Description 
 
The collective communications we look at are mainly collective operations that deal 
with data movement across the available processors [5]. They are block  collective 
operation re all t  involved. y build on the foundation of 
message passing, which is point-to-point com ations to o r simpler 
communication primitives th
 

 a scatter operation, a root processor (P0) sends a message that is split into equal 

/* dynamically allocate the arrays onto the fast memory
QCDOC*/ 
a = (double *) qalloc(QFLAGS, (N+OFFSET)*sizeof(double))

 of 

; 
b = (double *) qalloc(QFLAGS, (N+OFFSET)*sizeof(double)); 
c = (double *) qalloc(QFLAGS, (N+OFFSET)*sizeof(double)); 

The basic changes to the STREAM C
the vectors to dynamic allocation so that we can specify the fast memory using the 
QCOMMS|QFAST flag, or the DDR-SDRAM memory using the QCOMMS flag. 
 

3.2. Collective Communication Routines 
 
When considering one porting the two-dimensional fast Fourier transform we noticed 
hat collective communications that offer Scatter, Gather, All Gather, and t

operations would be required. Since they are not immediately available through the 
QMP library, we implemented them to make the kernel port possible. 
 
For the kernels we study later, we need collective communication routines that are not 
eadily available on the system. We therefore have to implemer

ing
s, whe he processors are The

munic ffe
at involve all the processors. 

In
segments. The ith segment is sent to the ith processor.  
 

 
Figure 13 Sca er operation

tion. Here messages 
re passed back from all processors to a root processor (P0). In this the individual 

segment sent by each pro er on the root processor. 
 

 tt

 
The gather operation is considered the inverse of the scatter opera
a

cessor is concatenated in rank ord

 



 
Figure 14 Gather operation 

n an All Gather operation, the messages are passed back to all of the avI
p

ailable 
rocessors. 

 

 
Figure 15 All gather operation 

 

he AlltoAll operation is an extension the All Gather operation, where each processor 

 

 
T
sends distinct data to each of the receivers. The jth block sent from process I is 
received by process j and is placed in the ith block. 
 

 
Figure 16 AlltoAll operation 

 

3.2.2. Implementation 
We therefore wrote the above collective communications (figure 17, 18, 19, 20). The 
communication routines were written using the memory copy function written by 
Michael Creutz [2]. 

a 
essage to be sent from one node (source) to another node (destination) while 

pecifying the specific size of the data to be transferred, that is the number of 
elements and their type. The routine then handles routing the message appropriately 
across the physical network, using one of the bi-directional links for sending, and the 

 
 

qmemcpy(int destproc, void *  dest, int srcproc, void * src, int size); 
 
t is worth briefly looking at how the qmemcpy routine works [10]. It allows I

m
s
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other for listening. A lookup table is generated with the optimal path the message 
should follow, if at some point the line is busy then the message enters a FIFO based 
queue. The communications are implemented using the SCU library, where the 
exchanged messages are written to a send address register, global interrupt on a line 
flag store/fetches, and synchronizations. 
 

 

 

/* 
 * scatter(int numnodes, void * destbuf, int srcnode, void * srcbuf, int sendcount, int datatype_size) 
 * 
 * [ IN numnodes] number of nodes to scatter to in order 

ess of source buffer 
 * [ IN sendcount] number of elements to send to each process 
 * [ IN datatype_size] size of data type to send/receive 
 * 
 */ 
void 
gencom::scatter(int numnodes, void * destbuf, int srcnode, void * srcbuf, int sendcount, int datatype_size) { 
  printf(""); 
  int destnode=0; 
    for (destnode=0;destnode<numnodes;destnode++) { 
      if(processor == srcnode) { 
        mycom.qmemcpy((int)destnode, destbuf, (int)srcnode, &(((double *)srcbuf)[sendcount*destnode]), 
(int)sendcount*datatype_size); 
      } 
      mycom.finishcopy(); 
      mycom.maxqueue=0; 
    } 

 * [ OUT destbuf] address of destination buffer 
 * [ IN srcnode] rank of sending process 
 * [ IN srcbuf] addr

} 

Figure 17 Scatter Routine implemented with qmemcpy 

 
/ * gather(int numnodes, void * destbuf, int dstnode, void * srcbuf, int sendcount, 
int datatype_size) 
 * 
 * [ IN numnodes] number of nodes to scatter to in order 
 * [ OUT destbuf] address of destination buffer 
 * [ IN dstnode] rank of receiving process 
 * [ IN srcbuf] address of source buffer 
 * [ IN sendcount] number of elements to send to each process 
 * [ IN datatype_size] size of data type to send/receive 
 * 
 */ 
void 
gencom::gather(int numnodes, void * destbuf, int dstnode, void * srcbuf, int 
sendcount, int datatype_siz
 
  int srcnode=0; 
 
    for (srcnode=0;srcnode<numnodes;srcnode++) { 

) { 
ode, &(((double *)destbuf)[srcnode*sendcount]), 

  } 

e) { 

      if(processor == dstnode 
        mycom.qmemcpy((int)dstn
(int)srcnode, srcbuf, (int)sendcount*datatype_size); 
      } 
      mycom.finishcopy(); 
      mycom.maxqueue=0; 
    } 

Figure 18 Gather routine implemented with qmemcpy 
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3.3. An Image Processing Kernel 
The first computational kernel we port is a parallel lattice based image analysis 
program which rec i iteration over a 

o-dimensional domain. We start by describing the work that is done in this type of 
rogram and then show the porting implementation onto the QCDOC system. 

 

/* * allgather(int numnodes, void * destbuf, void * srcbuf, int sendcount, int 
datatype_size) 
 * 
 * [ IN numnodes] number of nodes to scatter to in order 
 * [ OUT destbuf] address of destination buffer 
 * [ IN srcbuf] address of source buffer 
 * [ IN sendcount] number of elements to send to each process 
 * [ IN datatype_size] size of data type to send/receive 
 * 
/ 

ncom::allgather(int numnodes, void * destbuf, void * srcbuf, int sendcount, int 

   mycom.qmemcpy((int)i, &(((double *)destbuf)[j*sendcount]), (int)j, srcbuf, 
t)sendcount*datatype_size); 
  mycom.finishcopy(); 

 *
void 
ge
datatype_size) { 
 
  int i=0, j=0; 
 
  for (i=0;i<numnodes;i++) { 
    for (j=0;j<numnodes;j++) { 
   
(in
    
      mycom.maxqueue=0; 
    } 
  } 
} 

Figure 19 Allgather routine implemented with qmemcpy 

/* 
 all *

 *
toall(int numnodes, void * destbuf, void * srcbuf, int sendcount, int datatype_size)

 
 * [ IN numnodes]
 * [ OUT destbuf]
 * [ IN srcbuf] address of source buffer 
 * [ IN sendcount] number of elements to send to each process 
 *
 *
 *
vo
gencom::alltoall(int numnodes, void * destbuf, void * srcbuf, int sendcount, int 
da
  
 
  
  
  ycom.qmemcpy((int)j, &(((double *)destbuf)[sendcount*i]), (int)i, &(((double 
*)srcbuf)[sendcount*j]), \ 
  
  
      mycom.maxqueue=0; 
  
  
} 

 number of nodes to scatter to in order 
 address of destination buffer 

 [ IN datatype_size] size of data type to send/receive 
 
/ 
id 

tatype_size) { 
int i=0,j=0; 

for (i=0;i<numnodes;i++) { 
r (j=0;j<numnodes;j++) {   fo

    m

                  (int)sendcount*datatype_size); 
    mycom.finishcopy(); 

  } 
} 

Figure 20 AlltoAll routine implemented with qmemcpy 

onstructs an image from its edge data by Jacob
tw
p
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3.
The program consists of three main parts: startup, main computation loop and cleanup 
(fi is initialized, preliminary 
ch ailable, reading-in the edge data file, and 
se
 

 

T ng the Jacobi algorithm to 
re imensional edge data set using the 5-point 
s
 

      (2) 

W edge input data, old is the image value at the current iteration and 
with the new is the final value of the reconstructed image at the iteration.  
 
T  
tw  sense the code can be distributed 
over the available processors to benefit from parallel computing techniques. Each 
it putational loop requires nearest neighbor communications 
(figure 22) to update the boundary data of the node. Each processor then computes 
the value of its local new with the data it has received from its neighbors until the
required number ping criterion or 

lerance level is reached. The termination criterion is given by (3) 
 

3.1. Description 

gure 17). At startup, the message passing environment 
ecks such as the number of processors av
tting up the appropriate data-structures are done. 

Distribute Data 

Figure 21 Schematic kernel design of the Jacobi Code 
he main computational loop of the kernel involves usi
construct an image from its MxN two-d

tencil described in equation (2) 

 
e 

Perform Jacobi 

Update Delta 

Gather Data 

)(25.0 ,1,1,,1,1, jijijijijiji edgeoldoldoldoldnew −+++×= +−+−

here edge is th

he streaming code is computationally intensive but it is easily parallelised using the
o-dimensional domain decomposition. In that

eration of the main com

 
of iterations is reached or when a preset stop

to

2)old− ,
1;1

, ji
ji

jiMN ==
      (3) 

 
This tolerance level indicates that the result obtained is sufficiently accurate and is 
obtained by performing a global sum over the available processors. 

;
2 (1 NjMi

new=∆ ∑
=

The final part consists of reassembling the processed data into a main buffer which is 
used to write the processed image to disk.  

=
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This application of the Jacobi algorithm makes a good benchmark style code [16], 
since the kernel displays a similarity to a variety of scientific codes with nearest 
neighbor interactions and global summations. What additionally makes this an 
attractive kernel is that the simplicity of the work taking place enables us to identify 
auses of poor performance which could be more dc

in
ifficult to understand and interpret 

 full applications. 
 

 
Figure 22 Vertical halo swaps in two-dimensional domain decomposition 

 
Im ar
more performant inverters are available for real performance code from a number of 

or our work the efficiency of the algorithm is not our main interest. What we really 

3.3.2. Implementation 

ications which is 
adily available. The global sum operation required for the calculating the residual is 

iation and proved versions of the Jacobi algorithm such as the Gauss-Seidel v

high-performance libraries [18]. 
 
F
want is a code that runs well and produces correct results that can be used to reflect 
the underlying performance characteristics of the system it is running on for our 
analysis.  
 
We are interested in the typical features of the code such as the nearest neighbor 
communications, the global post processing, and the porting details of this code to 
QCDOC which we look at next. 
 
 

 
At first impression this kernel should be easily ported onto the QCDOC architecture. 
The bulk of the computation involves nearest neighbor commun
re
also a routine available from the QMP library. Let’s go through the steps involved in 
porting this code to QCDOC. 
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The first step in porting the code to QMP on QCDOC involves minor changes to the 
original code that are not specifically parallel system specific. The original code was 
written in MPI and C using static two-dimensional arrays. Since there is only a C++ 
compiler on QCDOC, a simple conflict that arose involved the original code using the 
variable name new for the new buffer, when new is actually a reserved C++ keyword. 
Also The QMP implementation does not offer the equivalent of the MPI timing 

utine MPI_Wtime(). A portable timing routine was therefore added using the 
standard gettimeofday() call. 
 
 
Adjustments to the code data-structures then have to be made so that they reside on 
the heap instead of the stack because of the memory limitations static allocation has 
on QCDOC we mentioned earlier. An example of allocating the main buffer 
masterbuf of size MxN to the heap is (figure 16) 
 

 
Figure 23 Dynamically allocating a MxN buffer 

 
We can no igure 18) 
shows the alization 

volve scattering the image data for processing to the nodes then gathering the 

 

ata from file at a different offset instead. This parallel 

ro

w focus on message passing aspects of the port. The schematic (f
 communication patterns of the original code. Startup and fin

in
results is done with point to point messages.  
 

Point to Point 

Nearest-neighbor

Global Sum 

Point to Point 

double **masterbuf; 
masterbuf = (double **) qalloc(QFLAGS, M*sizeof(double)); 
masterbuf[0] = (double *) qalloc(QFLAGS, M*N*sizeof(double)); 
for(i=0;i<M; i++){ 
    masterbuf[i] = masterbuf[0] + (N)*i; 
} 

Figure 24 Communication Pattern of Original Code 

In the original code, the image dataset is then read into a master buffer on the 
processor of rank 0, and broadcasted to the other processors using MPI_Bcast. The 
equivalent in QMP is a QMP_broadcast(). We changed the original code, so that 
all the nodes read the image d
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read is advantageous in several ways. We first get rid of the inefficient broadcast 

ifferent approach. The alternative to using the 
ollective routines we implemented in section (3.2) has to do with an algorithmic 
hange: we would like to work on a dataset that is much larger than the memory 

rite their own files at the end of the 
n. This is not a port change but an algorithmic change which one would expect to 

per
 
Thi ith 
the m

 

Figure 25 Parallel read of image data snippet 

 
Reading in parallel is easier to implement than writing in parallel because writing 
brings out coherency issues with buffering at different levels of the system. So we 
eliminated that difficulty by having each processor write his individual file. The 
complete image can then be recreated by combining the output images in a 
post-processing phase using a standard open source image processing package [17]. 
 
In addition, instead of always reading data from an image dataset a random number 
(appendix link) generator was used e buffers instead. This is done via 
the function rndm_data_fill() which fills the supplied buffer with random data 
of type double. This is not a performance critical part of the code, but for many runs 
initializing the buffe . This allows us to 

operation, which in the event the image data cannot fit into the memory of the root 
node because impractical, and take advantage of a parallel I/O. No time is lost 
broadcasting or even scattering the input data to the nodes. Instead the nodes fill their 
buffers themselves. 
 
We can therefore replace the MPI collective communication routines of 
MPI_Scatter() and MPI_Gather() with the ones we have written for QCDOC. 
For this kernel we went for a d
c
c
available on one processor and the gather and scatter routine run into memory 
problems when reading large amounts of data.  
So the approach we opted for was to have the nodes read-in the image data from 
separate offsets of the data file and separately w
ru

fo tectures [19]. 

s 
nput file shown (figure 20) 

  int top=myrow*ny, 

rm better on several archi

is done in the code by calling the qmp_datread_offset() function w
ain algorithm for reading at the right offset of the i

 

    b
    l
    right=(mycolumn+1) * nx; 

      if(i<right && i>=left && j< bottom && j>=top) 
        x[(j-top) + ny*(i-left)] = t; 
    } 
  } 
  QMP_barrier(); 

ottom=(myrow+1)*ny, 
eft=mycolumn * nx, 

 
  /* read data into buffer at different offset */ 
  QMP_barrier(); 
  for (j=0; j<N; j++) { 
    for (i=0; i<M; i++) { 
      fscanf(fp,"%d", &t); 
 

to fill the nod

rs with random data is a matter of convenience
skip the I/O aspect to focus on the performance at the computation and messaging 
level. Also, it allows us to vary the dataset size that we are considering without 
having to generate an image of the required size.  
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Now that the two point to point steps of the program (figure 18) have been replaced 
by parallel I/O to fit bigger data into the processing nodes, faster and achieve better 
scalability, we can focus on the core part of the port, which involves the nearest 
neighbor communications and the global sum. 

 
Figure 26 Communication pattern of QCDOC computational loop 

The MPI environment is initialized and a two dimensional Cartesian communicator is 
created with defined data types for 

Nearest-neighbor 
Communications

Global Sum for 
Delta Update 

vertical (contiguous) and horizontal 
on-contiguous) halo swaps. Each node’s neighbors (up, down, left, right) are 

to 
communicators in QMP, but a Cartesian topology is defined by mapping the machine 
dimensions and a ns accordingly. For example, on a 1x1x1x2x2x2 
six dimensional map the application dimensions to a two 
dimensional topo
 

 
 
We then have a 4x2 two dimensional application topology. 
 
The horizontal and vertical halo swaps are performed using calls to non-blocking MPI 
sends and receive nd() and MPI_Irecv() in the original code. 
 

(n
identified using MPI_Cart_shift. The equivalent in QMP involves setting up the QMP 
environment with a call to QMP_init_msg_passing(). There is no equivalent 

pplication dimensio
machine partition, we 
logy.  

qpartition_re

s using MPI_Ise

 
Figure 27 Halo swapping with QMP 

In these send/receive constructs the direction dir and the sign isign indicate the 
axis along which data is being communicated and in which direction. This allows one 
to specify to which neighboring node the messages should be sent. 
 

QMP_start(mh); 
QMP_wait(mh); 

map –X45 –Y0123

mm = QMP_declare_msgmem(&old[Mp][1], (Np * sizeof(double))); 
mh = QMP_declare_send_relative(mm, dir, isign, 0); 

 

 
QMP_start(mh); 
QMP_wait(mh); 
 
mm = QMP_declare_msgmem(&old[Mp + 1][1], (Np * sizeof(double))); 
mh = QMP_declare_receive_relative(mm, dir, isign, 0); 
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Figure 28 Strided halo swap with QMP 

 

ation of summing data of type double is performed. 

Lastly, in the original co  data to the processor of 
rank 0 using non-blocking point to point communications, and the rank 0 rebuilds the 

3
 

3
A  
d
 

mm = QMP_declare_strided_msgmem(&old[1][Np], sizeof(double), Mp, 
((Np+2) * sizeof(double))); /* send down */ 
      mh = QMP_declare_send_relative(mm, dir, isign, 0); /* send down 
*/ 
 
QMP_start(mh); 
QMP_wait(mh); 
 
mm = QMP_declare_strided_msgmem(&old[1][Np + 1], sizeof(double), Mp, 
((Np+2) * sizeof(double))); /* recv down*/ 
mh = QMP_declare_receive_relative(mm, dir, isign, 0); /* recv down
*/ 
 
QMP_start(mh); 
QMP_wait(mh); 

A call is then made to the update_delta() function which computes delta (3), the 
termination criterion which is initially set at a tolerance of 0.03. The update of a 
tolerance level “delta” requires a global reduction which is done in the orginal MPI 
code using MPI_Allreduce(). The QMP equivalent simply involves calling  

 

 
The address of the variable to be summed and updated is passed as a parameter. 
This shows how the oper

QMP_sum_double(&ldeltasq); 

 
de, the compute nodes return their

master buffer and writes the processed image to disk. 
 
The correctness of the program is verified by the initial image outputs, and tests on 
different sized images, before switching to filling the buffers with data generated 
randomly. 
 

.4

.4
 f e-dimensional
is m (DFT) (4) and its inverse.  

. A Fast Fourier Kernel 

.1. Description 
ast Fourier transform code is an efficient algorithm to find the on
crete Fourier transfor

( )  N∑=
x

exfkf )(       (4) 

FFTs are of absolute importance to a wide variety of scientific ap





 ⋅
⋅

kxi π2~

plications ranging 
om signal processing to computational chemistry and finding solutions to partial 

differential equations. Despite the reliance on FFTs for scientific applications, they 
often present a key performance bottleneck.  

fr
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T udy. They have collective 
c l
operations on the data. Also the FFT itself is relatively computationally demanding. 
 
Let us briefly look describe FFTs before we look at how we ported the FFT code to 
QCDOC. 
 
M e
c o
one-dimensional FFTs. 
 





 ⋅

+
⋅

⋅
lykxi ππ 22~

his makes looking at FFTs interesting in our st
ommunication features which include scattering, gather and performing AlltoAl  

 
 

ultidimensional FFTs can be built on top of one-dimensional FFTs. So if w
der a two-dimensional FFT (5), then it can be built as a sequence of twonsi

( 

y x

Mlkf , ) ∑∑ = Neyxf ),(     (5) 

This can be rewritten as (6) 
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lyi

N
kxi

eeyxlkf
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),(,~

y x

f   (6) 

 (7) 

 
 

o that reaching a solution involves working with the partial Fourier transformS
 

( )






 ⋅
⋅

⋅= ∑ M
lyi

eykflkf
π2

),(ˆ,~
y

      (7) 

s how two-dimensional FFTs can be calculated as a series of two 
ne-dimensional FFTs.  

 
arallel computers is that each FFT is trivially 

arallel in along a row or column of the matrix a fact that can be exploited be highly 
exploited for parallel performance. 

he FFT program we consider is a simple FFT code that does not implement a highly 
performant FFT [19]. The motivation is not to implement a performant FFT but to 
understand the porting issues and to put to use our simple c
routines. 

changes. In that sense the port involves replacing the collective communication 

 
  

his showT
o

What makes this more appealing to p
p

 

3.4.2. Implementation 
 
T

ollective communication 

 
We do not do any changes to the FFT algorithm that is supplied with the code as it is 
written in C and ran immediately on the different architectures without requiring any 
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routines used in the FFT kernel with the appropriate QMP and qmemcpy based calls. 

 
Figure 29 Allocating the a, b two-dimensional buffers onto the heap 

After the image data set is initialized to a point source, and the twiddle factors are 
pre-computed, the communication environment is setup by calling 
 

 
The two-dimensional image is the distributed from the master processor by rows to 
the available processors (figure 23).  
 

 
Statically allocated arrays are replaced (figure 28) in order to be able to run bigger 
problem sizes without facing the memory limitations available on the stack on 
QCDOC stack. 
 

  a = (mycomplex **) qalloc(QFLAGS, IMAGE_SIZE*sizeof(mycomplex)); 
  b = (
  a[0] 

mycomplex **) qalloc(QFLAGS, IMAGE_SIZE*sizeof(mycomplex)); 
= (mycomplex *) qalloc(QFLAGS, IMAGE_SIZE*IMAGE_SIZE*sizeof(mycomplex)); 

  b[0] = (mycomplex *) qalloc(QFLAGS, IMAGE_SIZE*IMAGE_SIZE*sizeof(mycomplex)); 
  for(i=0;i<IMAGE_SIZE; i++){ 
    a[i] = a[0] + (IMAGE_SIZE)*i; 
    b[i] = b[0] + (IMAGE_SIZE)*i; 
  } 

mycom.start();

 
Figure 30 Scattering to available processors of image data by rows 

 called to distribute the input matrix by rows to the 

ced by a call to 

 
MPI_Scatter() is originally
available processors. 
 
MPI_Scatter((char *) a, IMAGE_SLICE * IMAGE_SIZE * 2, MPI_DOUBLE, 
               (char *) a_slice, IMAGE_SLICE * IMAGE_SIZE * 2, 
                MPI_DOUBLE,SOURCE_PROCESSOR, MPI_COMM_WORLD); 

 
This is repla
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he image is then transposed using the MPI_Alltoall() function, which 
part
 

 
 
This is replaced by a call to 
 

 
 
Each processor then performs a nal FFT but on the columns of 

inally the columns of the image a collected back to the master processor (figure 27) 
and the output image is tested for correctness. 
 

 

 
Each processor then performs a one-dimensional FFT on the rows of the local image.  
 

mycom.scatter(numtasks, (char *)*a_slice, SOURCE_PROCESSOR,  
             (char *)*a, IMAGE_SLICE * IMAGE_SIZE * 2, sizeof(double));

T
itions the intermediate image into columns 

MP
  E_SLICE * IMAGE_SLICE * 2, MPI_DOUBLE, 
   

I_Alltoall(a_chunks, IMAGE_SLICE * IMAGE_SLICE * 2, MPI_DOUBLE, 
              b_slice, IMAG
              MPI_COMM_WORLD);

mycom.alltoall(numtasks, *b_slice, a_chunks, IMAGE_SLICE * 
IMAGE_SLICE * 2, sizeof(double)); 

 s iecond one-dimens o
the local image.  
 
F

 
Figure 31 Gathering of output matrix by rows to master processor 

 
ils of the run are printed out to screen. 

 
The processed image columns are lastly gathered back to the master processor using
MPI_Gather, and timing deta
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his translates to 

 
T  the 
M ent 
is stopped 

 

 of the problems encountered while porting. 

hmark codes. Also despite the fact that 
a C++ compiler is present, there is no C compiler, therefore requiring minor 
adjustment to make the C code work. 

 
 The lack of MPI implementation for QCDOC is clearly a porting drawback. Its 

availability would have made our work more straightforward, as well as the 
machine more accessible. Nevertheless we understand that implementing MPI 
for QCDOC was never part of the project.  

 
 The lack of built-in, high-performance point-to-point communications is a key 

drawback to making porting a more straightforward task. 
 
 Often used memory automatically goes to the higher levels of cache on cache 

based architectures for re-use based on the principle of data locality. In the 
case of QCDOC because of the absence of L2 and L3 cache, we must 
explicitly place the data onto the EDRAM instead of the DDR-SDRAM to 
take advantage of fast memory. In the following chapter we discuss the 
performance benefits we obtain from doing this. 

 

 
 

 
 
T
 
mycom.gather(numtasks, *a, DEST_PROCESSOR, *a_slice, IMAGE_SLICE * 
IMAGE_SIZE * 2, sizeof(double)); 
 

he correctness of the program is verified initially by comparing the outputs of
es, and lastly the communication environmPI and QMP runs on different machin

mycom.stop(); 

MPI_Gather(a_slice, IMAGE_SLICE * IMAGE_SIZE * 2, MPI_DOUBLE, 

              DEST PROCESSOR
              a, IMAGE_SLICE * IMAGE_SIZE * 2, MPI_DOUBLE, 

, MPI COMM WORLD);

 
 

3.5. Porting Issues 
 
This is a summary
 

 Initially the lack of a Fortran compiler eliminated a wide class of applications 
that were interesting to consider as benc
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4. lysis 

 Bandwidth 

 benchmark on QCDOC using the fast 
DRAM) and slow (DDR-SDRAM) memory, as well as on the Bluegene system  

e two levels of optimization were used, the default optimization and the 
optimization level 3. 
 

he problem size considered for the STREAM dataset is of 16MB for the Bluegene 
stem. This number is big enough to be suitable for this benchmark, giving a factor 

 on Bluegene which is the 4MB L3. 

or QCDOC, the problem size is of 3MB in order for it to fit into the EDRAM runs, 

 

  Performance Results and Ana
 

4.1. Memory
 

e present the results (figure 32) of the streamW
(E
 
The codes were compiled on QCDOC with the highest optimization level –O6. 
On Bluegen

T
sy
of 4 times the largest cache
 
F
and it is of 16MB for the runs made on the DDR-SDRAM. 
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Triad
Operation

M
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STREAM Benchmark

QCDOC (DDRAM)

QCDOC (EDRAM)

BGL 
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Copy Scale Add

Figure 32 STREAM on Bluegene and QCDOC 

he results match our initial expectation of the fast EDRAM memory performing 
etter that the DDR-SDRAM on QCDOC. We notice that the fast EDRAM memory is 

around 3 times slower than the DDR-SDRAM which matches the system design. 
 
Better results for QCDOC where obtained [1] by using optimization techniques such 

 
T
b

 



as loop unrolling and data prefetching which increased the average memory
bandwidth up to 1024 MB/s. Additionally using assembly language optimizations the
memory bandwidth was pushed up to 1670 MB/s. 

 
 

The Bluegene results however are far better than those of QCDOC and in comparison, 
hat the clock ratio of 7/4 that is expected. 

his does not meet our expectations. It indicates that the memory architecture of 

he 
aximum system memory bandwidth. 

 yields an appreciable factor increase in performance. 

ons, problem sizes, and 
ptimizations flags. 

For QCDOC, the usage of both fast EDRAM memory and slow DDR-SDRAM 
memory was examined. This is indicated in the graphs by QCDOC (QFAST) for the 
EDRAM and QCDOC (QCOMMS) for the DDR-SDRAM. 
 
In order to measure the kernel performance we start by looking (figure 33) at the 
parallel speed-up we are obtaining by considering the equation (8). 

 

 

the QCDOC performance is poorer t
 
T
QCDOC is not fully exploited through the GNU compiler, whereas better 
performance is achieved with the Bluegene system compilers to efficiently exploit t
m
 
Nevertheless the results show that despite the lack of L2 and L3 cache on QCDOC 
using the fast memory
 

4.2. Image Processing Kernel 
 
In trying to understand the behavior of the image processing code under the different 
platforms, we looked at a different number of iterati
o
 

),(
)1,(),(

PNT
NTPNS =         (8) 

This is the ratio of the execution time on one processor over the execution time on P 
processors for the problem size N. 
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Figure 33 Parallel speed-up of image processing kernel 

cessors increase. 

 
This shows that QCDOC with the DDR-SDRAM is obtaining a good speed-up factor 
as the number of pro
 
Parallel efficiency is equal to the speed-up divided by the number of processors P. It is 
expressed as in (9) 
 

  
),(

),(
PNPTP

PNE ==              )1,(),( NTPNS   (9) 

 
Parallel efficiency decreases with the number of processors, but as with the problem 
sized increases we gain efficiency according to Amdahl’s law. 
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Figure 34 Parallel efficienc processing kernel 

up in the Jacobi algorithm part of the image 
rocessing code, it matches with the overall kernel performance. 

y of image 

 
If we look (figure 35) at the speed-
p
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Figure 35 Computational speed-up of image processing kernel 

 
By considering the Time x Processors graph (figure 35) at a logarithmic scale though 
we can better appreciate the overall performance of the code on the different 
architectures. This not only shows how well the code is scaling, but always gives a 
clearer view of how fast the kernel is actually running too.  
 

60

70 QCDOC (QFAST)

BGL
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Figure 3  kernel 

 

d the HPCx system. 
espite that QCDOC scales pretty well with the number of processors, this is mainly 
ue to its mesh based communications network. 

 
Using the DDR-SDRAM with QCDOC offers actually scaling better, but at the cost of 
a worse performance than if the fast EDRAM was used instead. 
 

4.4. FFT Kernel 
The input matrix considered for our comparison runs contains 1024x1024 complex 
elements. 
 
We start by looking at (figure 37) the results of the run on QCDOC with two varying 
configurations. The first one involves 32 processors configured in a 4x8 layout and 
the second consists of 64 processors in an 8x8 layout. 
 

Lattice 
Size 

Processors 
(layout) 

Scatter 
Time 

1d-fft-row 
Time 

Transpose 
Time 

1d-fft-column 
Time 

Gather 
Time 

Total 
Time 

6 Time * Processors logarithmic plot for image processing

Here the flatter curve indicates better scaling of the kernel. Now we can clearly see 
that the QCDOC runs are being outperformed by Bluegene an
D
d

1024x1024 32 (4x8) 0.888968 0.154458 23.08995 0.165683 0.920951 25.22001 
1024x1024 64 (8x8) 0.882371 0.077472 24.015203 0.083274 0.925177 25.983497 

Figure 37 FFT on QCDOC using qmemcpy based routines 
The first thing to notice is that the dominant factor is the transpose time. That is the 

 

kernel performance is communications limited. As the number of processors increases, 
that time is also increasing. 
 
This clearly shows that our AlltoAll() routines is not efficient enough. Whereas the 
catter and gather routines seem to be performing better. s
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Figure 38 FFT on BlueGene 

 
 we look at the performance of the FFT code on Bluegene (figure 38), we see an 

ber of processors double. Scaling 
erformance is being gained but at the price of increasing time spent in collective data 

 brief, the serial performance on the QCDOC runs performance scaled reasonably 
well whereas the transpose did not.  

If
increase in the time taken by the gather routine as the number of processors increases. 
 
Similarly to QCDOC though, the serial part of the code performing the 
one-dimensional FFTs is being halved as the num
p
movement communications. 
 
In
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5.  Conclusions 
 

5.1. Summary of our Contributions 
 
In this work we have achieved our goal of porting different computational kernels to 
QCDOC. This has allowed us to become more familiar with porting parallel codes to 
QCDOC, specifically porting MPI codes to QMP. 
 
This work has shed the light on the issues involved in the porting process, such as the 
unavailability of general collective communication routines on QCDOC. We therefore 
made a first attempt to add the required collective communication routines using the 
convenient qmemcpy routine because it was available and easy to use.  
 
We also looked at the memory ed on QCDOC. This showed 
s that codes can benefit greatly from running on QCDOC by exploiting the fast 

astly although the Gather and Scatter routines which are not performance critical 
 does needs to 

ke 

 to look further into optimizing the AlltoAll 
ommunication on QCDOC. The fact that there is no standard optimized AlltoAll 
ommunication on QCDOC makes the system less attractive for a large number of 
ientific applications that require it. Probably the next milestone should focus on 
aking optimized collective communication routines available. 

 
 
 
 

 placement techniques us
u
EDRAM memory available on the system. 
 
L
performed well, we noted that the performance critical AlltoAll routine
be improved in order to allow a greater number of scientific applications to ta
advantage of QCDOC. 
 

5.2. Limitations and Future Directions 
The limited time did not allow us
c
c
sc
m
 

 



6.  Appendix 
 

6.1. Code Fragments 

6.1.1 Timing Routine 
 
/* timing function */ 
ouble d

get_current_time() { 

.1.2 Basic SCU Communication Example 

 
6.1.3 Jacobi Update 

 

struct timeval tv; 
gettimeofday(&tv, 0); 
return (double)tv.tv_sec + tv.tv_usec(1.e-6); 

} 

 

6
 
#include <stdio.h> 
#include <qcdocos.h> 

 
/* compute jacobi */ 
void 
compute_jacobi(int Mp, int Np, double ** old, double ** edge, double ** newb) { 
 
  int i, j; 
 
  for (i = 1; i < Mp + 1; i++) 
    for (j = 1; j < Np + 1; j++) 
      newb[i][j] = 0.25 * (old[i - 1][j] + old[i + 1][j] + old[i][j - 1] 
              + old[i][j + 1] - edge[i][j]); 
} 

#include <qalloc.h> 

 
  /* allocate and fill communication buffers */ 
  mybuffer1 = (char *) qalloc(QNONCACHE|QCOMMS|QFAST,BUFFERSIZE);

FFERSIZE);
queID());

  send.TransComplete(); 
  receive.TransComplete(); 
  printf("mybuffer1: %s\nmybuffer2: %s\n",mybuffer1,mybuffer2); 
 
  qfree(mybuffer1); 
  qfree(mybuffer2); 
  return 0; 
} 

#define BUFFERSIZE 80 
 
int main(){ 
  SCUDirArgIR send, receive; 
  char *mybuffer1,*mybuffer2; 
  DefaultSetup(); 

  mybuffer2 = (char *) qalloc(QNONCACHE|QCOMMS|QFAST,BU
  sprintf(mybuffer1,"hello world from processor %d",Uni
  sprintf(mybuffer2,"incoming message will go here"); 
  printf("mybuffer1: %s\nmybuffer2: %s\n",mybuffer1,mybuffer2); 
 
  /* transfer buffer1 to buffer2 down the W direction */ 
  send.Init(mybuffer1,SCU_WM,SCU_SEND,BUFFERSIZE,1,8); 
  receive.Init(mybuffer2,SCU_WP,SCU_REC,BUFFERSIZE,1,8); 
  send.StartTrans(); 
  receive.StartTrans(); 
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6.1.4 Parallel Read Routine 

 
 

 
 
 

 
void 
qmp_datread_offset(char *filename, void *vx, int M, int N, int nx, int 
ny, int myrank, int ndims, int myrow, int mycolumn) { 
  FILE *fp; 

 
filename,"r" ))) { 

tread: cannot open \"%s\"\n", filename); 
    QMP_fprintf(stderr, "check M,N values in imagempi.h\n", filename); 

  }
 
  /
 Q

  fscanf(fp,"%d %d",&nxt,&nyt); 
 

  int nxt, nyt, i, j=0, t; 
  double *x = (double *) vx; 

  if (NULL == (fp = fopen(
    perror(filename); 
    QMP_fprintf(stderr, "da

    QMP_abort(1); 
    exit(-1); 

 

* read in header data */ 
MP_barrier();  

 

  if (M != nxt || N != nyt) { 
    QMP_fprintf(stderr,"datread: size mismatch, (n
expected (%d,%d)\n", 

x,ny) = (%d,%d) 

     nxt, nyt, nx, ny); 

ow*ny, 

    exit(-1); 
   } 
  QMP_barrier(); 
 
 
  int top=myr
    bottom=(myrow+1)*ny, 
    left=mycolumn * nx, 

+1) * nx;     right=(mycolumn
 
  /* read data into buffer */ 
  QMP_barrier(); 
  for (j=0; j<N; j++) { 
    for (i=0; i<M; i++) { 
      fscanf(fp,"%d", &t); 
 
    if(i<right && i>=left && j< bottom && j>=top)   

        x[(j-top) + ny*(i-left)] = t; 
    } 
  } 
  QMP_barrier(); 
 
  fclose(fp); 
} 
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6
 

 
 
6  Kernel Main Loop 
 

 

.1.5 Random Number Generator Routine 

/* fill buffer with random data of type double */ 

x, int nx, int ny, int rank) { 

ble *) vx; 

ntf("filling buffers with %dx%d of random data\n", nx, ny); 

me */ 
t<unsigned>(time(0)*rank-(rank%4))); 

of type double */ 
for (i=0;i<nx * ny;i++) 

0); 

void 
rndm_data_fill(void *v
 
  int i,j; 
  double *x = (dou
 
  pri
 
  /* seed based on current ti
  srand(static_cas
 
  /* fill array with random data 
  
      x[i] = (double) (rand()%24
 
} 

.1.6 Image Processing

 

/* loop over iterations to recreate the image from the edges */ 
, iter = 1; iter <= MAXITER && delta > TOL; iter++) {   for (delta = 10.0 * TOL

 
  comm_time-=get_current_time(); 

Mp, Np, old, mycolumn, columns); 
p(mm, mh, Mp, Np, old, myrow, rows); 

time(); 

me(); 
  compute_jacobi(Mp, Np, old, edge, newb); 

compute and update delta */ 
ta_time-=get_current_time(); 

delta(M, N, iter, rank, Mp, Np, old, newb,delta); 
delta_time+=get_current_time(); 

 /* set old array equal to newb, excluding halos * 
     * copy old array back to buf, excluding halos */ 
  buf_update_time-=get_current_time(); 
    for (i = 1; i < Mp + 1; i++) 
      for (j = 1; j < Np + 1; j++) { 
        old[i][j] = newb[i][j]; 
        buf[i - 1][j - 1] = old[i][j]; 
      } 
  buf_update_time+=get_current_time(); 
 
  } 
  time_end = get_current_time(); 

 

    do_left_right_swap(mm, mh, 
    do_up_down_swa
  comm_time+=get_current_
 
  comp_time-=get_current_ti
  
  comp_time+=get_current_time(); 
 
    /* 
 
    delta = update_
 del
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6.2. Timetable 
 
T asks Resour

Analysis Code 
I Code to 

C/QMP on QCDOC 
Q

 and 

Report 

Write User Report an

2 weeks Compare Results with 
Other Systems** 

Port Kernel to Other 
Platforms and Analyse 

entative Schedule Objectives T ces 
3 weeks Implement Image Port C/MP C/MPI Code, QMP 

Standard, and 
CDOC 64 node 

Partition 
1 week Update Write User Manual, Experimental Data 

d Literature Review Documentation
Produce Interim 

3 weeks Implement another - - 
kernel 

Performance/Issues 

QCDOC, BlueSky, 
PCx, Lomond H

3 weeks Produce Thesis Paper Write Thesis Paper Experimental Data 
And Literature 

Review 
 

6
 

od Impact Mitigation 

.3. Risk Analysis 

Risk Likeliho
Running overtime in 60% 

porting a kernel  
Key project goals are 

not satisfied 
Scrap one of the 

kernels 
Running late in 40% 

gathering data for 
analysis 

Write up is delayed 
because of lack of 

results 

Using meetings and 
feedback to drive 

regular results findings 
Communication 
tines are not highly 

60% 
R thesis in presenting 

tines 

s on porting the 
kernels. 

Communication 
routines are additional 

goals. 

Limited impact from Focu
ou

effective new rou
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6.4. List of Acronyms 

ccess 
RAM: Dynamic Random Access Memory  

d D
EPCC: h Parallel C
FFT: Fast Fourier Transform 
FLOP:  Floating Point Operation  
GCC:  Gnu C Compiler  
GNU: t Unix  
HPC:  High Performance
JTAG:  Joint Test Action G
MIMD: Multiple Instruction Mul ta  
MPI:  Passing In
QCD:  Quantum Chromo Dynam
QCDO tum Chr  
QDP:  QCD Data Parallel 
QMP:  QCD Message Passing  
QOS:  QCDOC Operati
RISC:  Reduced Instruction Set Architecture  
SCU: Serial Communications Unit  

 

 
DMA: Direct Memory A
D
EDRAM:  Embedde RAM  

 Edinburg omputing Centre 

 Gnu is No
 Computing 

roup  
tiple Da

Message terface  
ics  

C:  Quan omodynamics On a Chip
 

 

ng System  
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